Isbell Duality Article Swipe
Related Concepts
John C. Baez
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.11079
· OA: W4312108219
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.11079
· OA: W4312108219
Mathematicians love dualities. After a brief explanation of dualities, with examples, we turn to one of the purest and most beautiful: Isbell duality. For any category $\mathsf{C}$, this gives an adjunction between the category of presheaves on $\mathsf{C}$, namely the functor category $[\mathsf{C}^{\text{op}}, \mathsf{Set}]$, and the opposite of the category of copresheaves on $\mathsf{C}$, namely $[\mathsf{C}, \mathsf{Set}]^{\text{op}}$.
Related Topics
Finding more related topics…