Isoperimetric Bounds for Weighted Steklov Eigenvalues with Radial Weights Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.12631
We study the following class of Steklov eigenvalue problems: \[ \nabla \cdot \bigl( w \nabla u \bigr) = 0 \quad \text{in } Ω, \qquad \frac{\partial u}{\partial ν} = γv u \quad \text{on } \partial Ω, \] where $w$ and $v$ are prescribed positive radial functions, $Ω$ is a Lipschitz domain in $\mathbb{R}^N$ with $N \geq 2$ and $ν$ denotes its outward unit normal. Extending classical results in the unweighted case due to Weinstock, the first author, and others, we establish isoperimetric inequalities for low-order eigenvalues under suitable symmetry assumptions on the domain. In the first part, we consider the case $w(x) = |x|^α$ and $v(x) = |x|^{β-α}$, where the parameters $α, β\in \mathbb{R}$ satisfy appropriate constraints. Our analysis relies on an explicit computation of the spectrum in the radial case, variational principles, and a family of weighted isoperimetric inequalities with ``double density''. In the second part, we address the case $v \equiv 1$ and $w(x) = W(|x|)$, where $W$ is a non-decreasing, log-convex function. In this setting, the proof relies, among other tools, on a new weighted isoperimetric inequality, which may be of independent interest.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.12631
- https://arxiv.org/pdf/2510.12631
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415270777
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415270777Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.12631Digital Object Identifier
- Title
-
Isoperimetric Bounds for Weighted Steklov Eigenvalues with Radial WeightsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-14Full publication date if available
- Authors
-
Friedemann Brock, Francesco ChiacchioList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.12631Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.12631Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.12631Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415270777 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.12631 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.12631 |
| ids.openalex | https://openalex.org/W4415270777 |
| fwci | |
| type | preprint |
| title | Isoperimetric Bounds for Weighted Steklov Eigenvalues with Radial Weights |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11205 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Numerical methods in inverse problems |
| topics[1].id | https://openalex.org/T12100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Advanced Mathematical Modeling in Engineering |
| topics[2].id | https://openalex.org/T11022 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9930999875068665 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Spectral Theory in Mathematical Physics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.12631 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.12631 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.12631 |
| locations[1].id | doi:10.48550/arxiv.2510.12631 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.12631 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5110620795 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-4014-2423 |
| authorships[0].author.display_name | Friedemann Brock |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Brock, Friedemann |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110553154 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5261-1178 |
| authorships[1].author.display_name | Francesco Chiacchio |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Chiacchio, Francesco |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.12631 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-17T00:00:00 |
| display_name | Isoperimetric Bounds for Weighted Steklov Eigenvalues with Radial Weights |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11205 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Numerical methods in inverse problems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.12631 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.12631 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.12631 |
| primary_location.id | pmh:oai:arXiv.org:2510.12631 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.12631 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.12631 |
| publication_date | 2025-10-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.0 | 18 |
| abstract_inverted_index.= | 17, 27, 101, 105, 155 |
| abstract_inverted_index.a | 47, 133, 160, 174 |
| abstract_inverted_index.u | 15, 29 |
| abstract_inverted_index.w | 13 |
| abstract_inverted_index.} | 21, 32 |
| abstract_inverted_index.$N | 53 |
| abstract_inverted_index.$v | 150 |
| abstract_inverted_index.1$ | 152 |
| abstract_inverted_index.2$ | 55 |
| abstract_inverted_index.In | 92, 142, 164 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.\[ | 9 |
| abstract_inverted_index.\] | 35 |
| abstract_inverted_index.an | 120 |
| abstract_inverted_index.be | 181 |
| abstract_inverted_index.in | 50, 66, 126 |
| abstract_inverted_index.is | 46, 159 |
| abstract_inverted_index.of | 5, 123, 135, 182 |
| abstract_inverted_index.on | 89, 119, 173 |
| abstract_inverted_index.to | 71 |
| abstract_inverted_index.we | 78, 96, 146 |
| abstract_inverted_index.$W$ | 158 |
| abstract_inverted_index.$v$ | 39 |
| abstract_inverted_index.$w$ | 37 |
| abstract_inverted_index.Our | 116 |
| abstract_inverted_index.and | 38, 56, 76, 103, 132, 153 |
| abstract_inverted_index.are | 40 |
| abstract_inverted_index.due | 70 |
| abstract_inverted_index.for | 82 |
| abstract_inverted_index.its | 59 |
| abstract_inverted_index.may | 180 |
| abstract_inverted_index.new | 175 |
| abstract_inverted_index.the | 2, 67, 73, 90, 93, 98, 108, 124, 127, 143, 148, 167 |
| abstract_inverted_index.Ω, | 22, 34 |
| abstract_inverted_index.γv | 28 |
| abstract_inverted_index.ν} | 26 |
| abstract_inverted_index.$Ω$ | 45 |
| abstract_inverted_index.$α, | 110 |
| abstract_inverted_index.$ν$ | 57 |
| abstract_inverted_index.\geq | 54 |
| abstract_inverted_index.case | 69, 99, 149 |
| abstract_inverted_index.this | 165 |
| abstract_inverted_index.unit | 61 |
| abstract_inverted_index.with | 52, 139 |
| abstract_inverted_index.$v(x) | 104 |
| abstract_inverted_index.$w(x) | 100, 154 |
| abstract_inverted_index.\cdot | 11 |
| abstract_inverted_index.\quad | 19, 30 |
| abstract_inverted_index.among | 170 |
| abstract_inverted_index.case, | 129 |
| abstract_inverted_index.class | 4 |
| abstract_inverted_index.first | 74, 94 |
| abstract_inverted_index.other | 171 |
| abstract_inverted_index.part, | 95, 145 |
| abstract_inverted_index.proof | 168 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.under | 85 |
| abstract_inverted_index.where | 36, 107, 157 |
| abstract_inverted_index.which | 179 |
| abstract_inverted_index.β\in | 111 |
| abstract_inverted_index.\bigl( | 12 |
| abstract_inverted_index.\bigr) | 16 |
| abstract_inverted_index.\equiv | 151 |
| abstract_inverted_index.\nabla | 10, 14 |
| abstract_inverted_index.\qquad | 23 |
| abstract_inverted_index.domain | 49 |
| abstract_inverted_index.family | 134 |
| abstract_inverted_index.radial | 43, 128 |
| abstract_inverted_index.relies | 118 |
| abstract_inverted_index.second | 144 |
| abstract_inverted_index.tools, | 172 |
| abstract_inverted_index.Steklov | 6 |
| abstract_inverted_index.address | 147 |
| abstract_inverted_index.author, | 75 |
| abstract_inverted_index.denotes | 58 |
| abstract_inverted_index.domain. | 91 |
| abstract_inverted_index.normal. | 62 |
| abstract_inverted_index.others, | 77 |
| abstract_inverted_index.outward | 60 |
| abstract_inverted_index.relies, | 169 |
| abstract_inverted_index.results | 65 |
| abstract_inverted_index.satisfy | 113 |
| abstract_inverted_index.|x|^α$ | 102 |
| abstract_inverted_index.W(|x|)$, | 156 |
| abstract_inverted_index.\partial | 33 |
| abstract_inverted_index.\text{in | 20 |
| abstract_inverted_index.\text{on | 31 |
| abstract_inverted_index.``double | 140 |
| abstract_inverted_index.analysis | 117 |
| abstract_inverted_index.consider | 97 |
| abstract_inverted_index.explicit | 121 |
| abstract_inverted_index.positive | 42 |
| abstract_inverted_index.setting, | 166 |
| abstract_inverted_index.spectrum | 125 |
| abstract_inverted_index.suitable | 86 |
| abstract_inverted_index.symmetry | 87 |
| abstract_inverted_index.weighted | 136, 176 |
| abstract_inverted_index.Extending | 63 |
| abstract_inverted_index.Lipschitz | 48 |
| abstract_inverted_index.classical | 64 |
| abstract_inverted_index.establish | 79 |
| abstract_inverted_index.following | 3 |
| abstract_inverted_index.function. | 163 |
| abstract_inverted_index.interest. | 184 |
| abstract_inverted_index.low-order | 83 |
| abstract_inverted_index.problems: | 8 |
| abstract_inverted_index.Weinstock, | 72 |
| abstract_inverted_index.density''. | 141 |
| abstract_inverted_index.eigenvalue | 7 |
| abstract_inverted_index.functions, | 44 |
| abstract_inverted_index.log-convex | 162 |
| abstract_inverted_index.parameters | 109 |
| abstract_inverted_index.prescribed | 41 |
| abstract_inverted_index.unweighted | 68 |
| abstract_inverted_index.\mathbb{R}$ | 112 |
| abstract_inverted_index.appropriate | 114 |
| abstract_inverted_index.assumptions | 88 |
| abstract_inverted_index.computation | 122 |
| abstract_inverted_index.eigenvalues | 84 |
| abstract_inverted_index.independent | 183 |
| abstract_inverted_index.inequality, | 178 |
| abstract_inverted_index.principles, | 131 |
| abstract_inverted_index.u}{\partial | 25 |
| abstract_inverted_index.variational | 130 |
| abstract_inverted_index.constraints. | 115 |
| abstract_inverted_index.inequalities | 81, 138 |
| abstract_inverted_index.isoperimetric | 80, 137, 177 |
| abstract_inverted_index.|x|^{β-α}$, | 106 |
| abstract_inverted_index.$\mathbb{R}^N$ | 51 |
| abstract_inverted_index.\frac{\partial | 24 |
| abstract_inverted_index.non-decreasing, | 161 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |