ISP-Teacher:Image Signal Process with Disentanglement Regularization for Unsupervised Domain Adaptive Dark Object Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i7.28569
Object detection in dark conditions has always been a great challenge due to the complex formation process of low-light images. Currently, the mainstream methods usually adopt domain adaptation with Teacher-Student architecture to solve the dark object detection problem, and they imitate the dark conditions by using non-learnable data augmentation strategies on the annotated source daytime images. Note that these methods neglected to model the intrinsic imaging process, i.e. image signal processing (ISP), which is important for camera sensors to generate low-light images. To solve the above problems, in this paper, we propose a novel method named ISP-Teacher for dark object detection by exploring Teacher-Student architecture from a new perspective (i.e. self-supervised learning based ISP degradation). Specifically, we first design a day-to-night transformation module that consistent with the ISP pipeline of the camera sensors (ISP-DTM) to make the augmented images look more in line with the natural low-light images captured by cameras, and the ISP-related parameters are learned in a self-supervised manner. Moreover, to avoid the conflict between the ISP degradation and detection tasks in a shared encoder, we propose a disentanglement regularization (DR) that minimizes the absolute value of cosine similarity to disentangle two tasks and push two gradients vectors as orthogonal as possible. Extensive experiments conducted on two benchmarks show the effectiveness of our method in dark object detection. In particular, ISP-Teacher achieves an improvement of +2.4% AP and +3.3% AP over the SOTA method on BDD100k and SHIFT datasets, respectively. The code can be found at https://github.com/zhangyin1996/ISP-Teacher.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i7.28569
- https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106
- OA Status
- diamond
- Cited By
- 8
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393147979
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393147979Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i7.28569Digital Object Identifier
- Title
-
ISP-Teacher:Image Signal Process with Disentanglement Regularization for Unsupervised Domain Adaptive Dark Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Yin Zhang, Yongqiang Zhang, Zian Zhang, Man Zhang, Rui Tian, Mingli DingList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i7.28569Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106Direct OA link when available
- Concepts
-
Regularization (linguistics), Artificial intelligence, Computer science, Image (mathematics), SIGNAL (programming language), Pattern recognition (psychology), Process (computing), Computer vision, Operating system, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393147979 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i7.28569 |
| ids.doi | https://doi.org/10.1609/aaai.v38i7.28569 |
| ids.openalex | https://openalex.org/W4393147979 |
| fwci | 8.73498229 |
| type | article |
| title | ISP-Teacher:Image Signal Process with Disentanglement Regularization for Unsupervised Domain Adaptive Dark Object Detection |
| biblio.issue | 7 |
| biblio.volume | 38 |
| biblio.last_page | 7395 |
| biblio.first_page | 7387 |
| topics[0].id | https://openalex.org/T12389 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9743000268936157 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Infrared Target Detection Methodologies |
| topics[1].id | https://openalex.org/T14319 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9599999785423279 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Currency Recognition and Detection |
| topics[2].id | https://openalex.org/T11992 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9503999948501587 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | CCD and CMOS Imaging Sensors |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776135515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7013314366340637 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[0].display_name | Regularization (linguistics) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5369099974632263 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5337575078010559 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4922761023044586 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C2779843651 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46083977818489075 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[4].display_name | SIGNAL (programming language) |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4426402747631073 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43406346440315247 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4093739092350006 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/regularization |
| keywords[0].score | 0.7013314366340637 |
| keywords[0].display_name | Regularization (linguistics) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5369099974632263 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5337575078010559 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.4922761023044586 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/signal |
| keywords[4].score | 0.46083977818489075 |
| keywords[4].display_name | SIGNAL (programming language) |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.4426402747631073 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.43406346440315247 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4093739092350006 |
| keywords[7].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i7.28569 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i7.28569 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100343725 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6761-2269 |
| authorships[0].author.display_name | Yin Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[0].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I204983213 |
| authorships[0].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Harbin Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yin Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[1].author.id | https://openalex.org/A5067627796 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1403-9128 |
| authorships[1].author.display_name | Yongqiang Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[1].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[1].institutions[0].id | https://openalex.org/I204983213 |
| authorships[1].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Harbin Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongqiang Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[2].author.id | https://openalex.org/A5024592010 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-7999-2640 |
| authorships[2].author.display_name | Zian Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[2].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[2].institutions[0].id | https://openalex.org/I204983213 |
| authorships[2].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Harbin Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zian Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[3].author.id | https://openalex.org/A5100353094 |
| authorships[3].author.orcid | https://orcid.org/0009-0007-4481-0514 |
| authorships[3].author.display_name | Man Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[3].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I204983213 |
| authorships[3].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Harbin Institute of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Man Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[4].author.id | https://openalex.org/A5100771412 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0911-6766 |
| authorships[4].author.display_name | Rui Tian |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[4].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[4].institutions[0].id | https://openalex.org/I204983213 |
| authorships[4].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Harbin Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rui Tian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Harbin Institute of Technology |
| authorships[5].author.id | https://openalex.org/A5089374379 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7510-7043 |
| authorships[5].author.display_name | Mingli Ding |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I204983213 |
| authorships[5].affiliations[0].raw_affiliation_string | Harbin Institute of Technology |
| authorships[5].institutions[0].id | https://openalex.org/I204983213 |
| authorships[5].institutions[0].ror | https://ror.org/01yqg2h08 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I204983213 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Harbin Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mingli Ding |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Harbin Institute of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ISP-Teacher:Image Signal Process with Disentanglement Regularization for Unsupervised Domain Adaptive Dark Object Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12389 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9743000268936157 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Infrared Target Detection Methodologies |
| related_works | https://openalex.org/W4254199101, https://openalex.org/W1670153145, https://openalex.org/W2755342338, https://openalex.org/W2775347418, https://openalex.org/W4300427796, https://openalex.org/W4287196534, https://openalex.org/W2051864124, https://openalex.org/W3023929447, https://openalex.org/W2155006800, https://openalex.org/W2779427294 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i7.28569 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i7.28569 |
| primary_location.id | doi:10.1609/aaai.v38i7.28569 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28569/29106 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i7.28569 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6756505186, https://openalex.org/W6778485988, https://openalex.org/W4299418106, https://openalex.org/W3204374989, https://openalex.org/W4300079331, https://openalex.org/W2069281566, https://openalex.org/W3006800054, https://openalex.org/W3002804594, https://openalex.org/W6687483927, https://openalex.org/W4229078651, https://openalex.org/W6855765085, https://openalex.org/W6845748777, https://openalex.org/W4226042837, https://openalex.org/W6789505266, https://openalex.org/W6848226584, https://openalex.org/W2613718673, https://openalex.org/W4283066310, https://openalex.org/W4297631583, https://openalex.org/W4366198218, https://openalex.org/W3199451736, https://openalex.org/W6771876938, https://openalex.org/W2953106684, https://openalex.org/W4293584584, https://openalex.org/W4386065632, https://openalex.org/W2901996700, https://openalex.org/W4385483056, https://openalex.org/W3106539628, https://openalex.org/W4320350643, https://openalex.org/W2194775991, https://openalex.org/W4312458399, https://openalex.org/W3021542222, https://openalex.org/W3035731588, https://openalex.org/W4313160574, https://openalex.org/W2799352588, https://openalex.org/W3130976481, https://openalex.org/W2996490626, https://openalex.org/W4312993742, https://openalex.org/W4386075772, https://openalex.org/W3166409449, https://openalex.org/W4313030842, https://openalex.org/W3030520226, https://openalex.org/W4386075513 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 8, 92, 106, 119, 158, 174, 179 |
| abstract_inverted_index.AP | 228, 231 |
| abstract_inverted_index.In | 220 |
| abstract_inverted_index.To | 82 |
| abstract_inverted_index.an | 224 |
| abstract_inverted_index.as | 200, 202 |
| abstract_inverted_index.at | 247 |
| abstract_inverted_index.be | 245 |
| abstract_inverted_index.by | 44, 101, 149 |
| abstract_inverted_index.in | 2, 87, 141, 157, 173, 216 |
| abstract_inverted_index.is | 73 |
| abstract_inverted_index.of | 17, 129, 188, 213, 226 |
| abstract_inverted_index.on | 50, 207, 236 |
| abstract_inverted_index.to | 12, 31, 61, 78, 134, 162, 191 |
| abstract_inverted_index.we | 90, 116, 177 |
| abstract_inverted_index.ISP | 113, 127, 168 |
| abstract_inverted_index.The | 242 |
| abstract_inverted_index.and | 38, 151, 170, 195, 229, 238 |
| abstract_inverted_index.are | 155 |
| abstract_inverted_index.can | 244 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.for | 75, 97 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.new | 107 |
| abstract_inverted_index.our | 214 |
| abstract_inverted_index.the | 13, 21, 33, 41, 51, 63, 84, 126, 130, 136, 144, 152, 164, 167, 185, 211, 233 |
| abstract_inverted_index.two | 193, 197, 208 |
| abstract_inverted_index.(DR) | 182 |
| abstract_inverted_index.Note | 56 |
| abstract_inverted_index.SOTA | 234 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.code | 243 |
| abstract_inverted_index.dark | 3, 34, 42, 98, 217 |
| abstract_inverted_index.data | 47 |
| abstract_inverted_index.from | 105 |
| abstract_inverted_index.i.e. | 67 |
| abstract_inverted_index.line | 142 |
| abstract_inverted_index.look | 139 |
| abstract_inverted_index.make | 135 |
| abstract_inverted_index.more | 140 |
| abstract_inverted_index.over | 232 |
| abstract_inverted_index.push | 196 |
| abstract_inverted_index.show | 210 |
| abstract_inverted_index.that | 57, 123, 183 |
| abstract_inverted_index.they | 39 |
| abstract_inverted_index.this | 88 |
| abstract_inverted_index.with | 28, 125, 143 |
| abstract_inverted_index.(i.e. | 109 |
| abstract_inverted_index.+2.4% | 227 |
| abstract_inverted_index.+3.3% | 230 |
| abstract_inverted_index.SHIFT | 239 |
| abstract_inverted_index.above | 85 |
| abstract_inverted_index.adopt | 25 |
| abstract_inverted_index.avoid | 163 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.first | 117 |
| abstract_inverted_index.found | 246 |
| abstract_inverted_index.great | 9 |
| abstract_inverted_index.image | 68 |
| abstract_inverted_index.model | 62 |
| abstract_inverted_index.named | 95 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.solve | 32, 83 |
| abstract_inverted_index.tasks | 172, 194 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.using | 45 |
| abstract_inverted_index.value | 187 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.(ISP), | 71 |
| abstract_inverted_index.Object | 0 |
| abstract_inverted_index.always | 6 |
| abstract_inverted_index.camera | 76, 131 |
| abstract_inverted_index.cosine | 189 |
| abstract_inverted_index.design | 118 |
| abstract_inverted_index.domain | 26 |
| abstract_inverted_index.images | 138, 147 |
| abstract_inverted_index.method | 94, 215, 235 |
| abstract_inverted_index.module | 122 |
| abstract_inverted_index.object | 35, 99, 218 |
| abstract_inverted_index.paper, | 89 |
| abstract_inverted_index.shared | 175 |
| abstract_inverted_index.signal | 69 |
| abstract_inverted_index.source | 53 |
| abstract_inverted_index.BDD100k | 237 |
| abstract_inverted_index.between | 166 |
| abstract_inverted_index.complex | 14 |
| abstract_inverted_index.daytime | 54 |
| abstract_inverted_index.images. | 19, 55, 81 |
| abstract_inverted_index.imaging | 65 |
| abstract_inverted_index.imitate | 40 |
| abstract_inverted_index.learned | 156 |
| abstract_inverted_index.manner. | 160 |
| abstract_inverted_index.methods | 23, 59 |
| abstract_inverted_index.natural | 145 |
| abstract_inverted_index.process | 16 |
| abstract_inverted_index.propose | 91, 178 |
| abstract_inverted_index.sensors | 77, 132 |
| abstract_inverted_index.usually | 24 |
| abstract_inverted_index.vectors | 199 |
| abstract_inverted_index.absolute | 186 |
| abstract_inverted_index.achieves | 223 |
| abstract_inverted_index.cameras, | 150 |
| abstract_inverted_index.captured | 148 |
| abstract_inverted_index.conflict | 165 |
| abstract_inverted_index.encoder, | 176 |
| abstract_inverted_index.generate | 79 |
| abstract_inverted_index.learning | 111 |
| abstract_inverted_index.pipeline | 128 |
| abstract_inverted_index.problem, | 37 |
| abstract_inverted_index.process, | 66 |
| abstract_inverted_index.(ISP-DTM) | 133 |
| abstract_inverted_index.Extensive | 204 |
| abstract_inverted_index.Moreover, | 161 |
| abstract_inverted_index.annotated | 52 |
| abstract_inverted_index.augmented | 137 |
| abstract_inverted_index.challenge | 10 |
| abstract_inverted_index.conducted | 206 |
| abstract_inverted_index.datasets, | 240 |
| abstract_inverted_index.detection | 1, 36, 100, 171 |
| abstract_inverted_index.exploring | 102 |
| abstract_inverted_index.formation | 15 |
| abstract_inverted_index.gradients | 198 |
| abstract_inverted_index.important | 74 |
| abstract_inverted_index.intrinsic | 64 |
| abstract_inverted_index.low-light | 18, 80, 146 |
| abstract_inverted_index.minimizes | 184 |
| abstract_inverted_index.neglected | 60 |
| abstract_inverted_index.possible. | 203 |
| abstract_inverted_index.problems, | 86 |
| abstract_inverted_index.Currently, | 20 |
| abstract_inverted_index.adaptation | 27 |
| abstract_inverted_index.benchmarks | 209 |
| abstract_inverted_index.conditions | 4, 43 |
| abstract_inverted_index.consistent | 124 |
| abstract_inverted_index.detection. | 219 |
| abstract_inverted_index.mainstream | 22 |
| abstract_inverted_index.orthogonal | 201 |
| abstract_inverted_index.parameters | 154 |
| abstract_inverted_index.processing | 70 |
| abstract_inverted_index.similarity | 190 |
| abstract_inverted_index.strategies | 49 |
| abstract_inverted_index.ISP-Teacher | 96, 222 |
| abstract_inverted_index.ISP-related | 153 |
| abstract_inverted_index.degradation | 169 |
| abstract_inverted_index.disentangle | 192 |
| abstract_inverted_index.experiments | 205 |
| abstract_inverted_index.improvement | 225 |
| abstract_inverted_index.particular, | 221 |
| abstract_inverted_index.perspective | 108 |
| abstract_inverted_index.architecture | 30, 104 |
| abstract_inverted_index.augmentation | 48 |
| abstract_inverted_index.day-to-night | 120 |
| abstract_inverted_index.Specifically, | 115 |
| abstract_inverted_index.degradation). | 114 |
| abstract_inverted_index.effectiveness | 212 |
| abstract_inverted_index.non-learnable | 46 |
| abstract_inverted_index.respectively. | 241 |
| abstract_inverted_index.regularization | 181 |
| abstract_inverted_index.transformation | 121 |
| abstract_inverted_index.Teacher-Student | 29, 103 |
| abstract_inverted_index.disentanglement | 180 |
| abstract_inverted_index.self-supervised | 110, 159 |
| abstract_inverted_index.https://github.com/zhangyin1996/ISP-Teacher. | 248 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.96784566 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |