ISTRBoost: Importance Sampling Transfer Regression using Boosting Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.12044
Current Instance Transfer Learning (ITL) methodologies use domain adaptation and sub-space transformation to achieve successful transfer learning. However, these methodologies, in their processes, sometimes overfit on the target dataset or suffer from negative transfer if the test dataset has a high variance. Boosting methodologies have been shown to reduce the risk of overfitting by iteratively re-weighing instances with high-residual. However, this balance is usually achieved with parameter optimization, as well as reducing the skewness in weights produced due to the size of the source dataset. While the former can be achieved, the latter is more challenging and can lead to negative transfer. We introduce a simpler and more robust fix to this problem by building upon the popular boosting ITL regression methodology, two-stage TrAdaBoost.R2. Our methodology,~\us{}, is a boosting and random-forest based ensemble methodology that utilizes importance sampling to reduce the skewness due to the source dataset. We show that~\us{}~performs better than competitive transfer learning methodologies $63\%$ of the time. It also displays consistency in its performance over diverse datasets with varying complexities, as opposed to the sporadic results observed for other transfer learning methodologies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.12044
- https://arxiv.org/pdf/2204.12044
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224991918
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224991918Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.12044Digital Object Identifier
- Title
-
ISTRBoost: Importance Sampling Transfer Regression using BoostingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-26Full publication date if available
- Authors
-
Shrey Gupta, Jianzhao Bi, Yang Liu, Avani WildaniList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.12044Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.12044Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.12044Direct OA link when available
- Concepts
-
Overfitting, Boosting (machine learning), Computer science, Transfer of learning, Machine learning, Artificial intelligence, Skewness, Random forest, Regression, Ensemble learning, Consistency (knowledge bases), Gradient boosting, Residual, Sampling (signal processing), Data mining, Econometrics, Mathematics, Statistics, Algorithm, Computer vision, Artificial neural network, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224991918 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.12044 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.12044 |
| ids.openalex | https://openalex.org/W4224991918 |
| fwci | |
| type | preprint |
| title | ISTRBoost: Importance Sampling Transfer Regression using Boosting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T10515 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9689000248908997 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1306 |
| topics[1].subfield.display_name | Cancer Research |
| topics[1].display_name | Cancer-related molecular mechanisms research |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9132999777793884 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C22019652 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8769691586494446 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[0].display_name | Overfitting |
| concepts[1].id | https://openalex.org/C46686674 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8525099754333496 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[1].display_name | Boosting (machine learning) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7110176086425781 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6727078557014465 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6308872699737549 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5708928108215332 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C122342681 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5194917917251587 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q330828 |
| concepts[6].display_name | Skewness |
| concepts[7].id | https://openalex.org/C169258074 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5104150176048279 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[7].display_name | Random forest |
| concepts[8].id | https://openalex.org/C83546350 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5002613067626953 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[8].display_name | Regression |
| concepts[9].id | https://openalex.org/C45942800 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48606517910957336 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[9].display_name | Ensemble learning |
| concepts[10].id | https://openalex.org/C2776436953 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4490424692630768 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[10].display_name | Consistency (knowledge bases) |
| concepts[11].id | https://openalex.org/C70153297 |
| concepts[11].level | 3 |
| concepts[11].score | 0.42495211958885193 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[11].display_name | Gradient boosting |
| concepts[12].id | https://openalex.org/C155512373 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4203316569328308 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[12].display_name | Residual |
| concepts[13].id | https://openalex.org/C140779682 |
| concepts[13].level | 3 |
| concepts[13].score | 0.41360458731651306 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[13].display_name | Sampling (signal processing) |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3454577624797821 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C149782125 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1798122525215149 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[15].display_name | Econometrics |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.17318055033683777 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.17152947187423706 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C11413529 |
| concepts[18].level | 1 |
| concepts[18].score | 0.14690282940864563 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[18].display_name | Algorithm |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| concepts[20].id | https://openalex.org/C50644808 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[20].display_name | Artificial neural network |
| concepts[21].id | https://openalex.org/C106131492 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[21].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/overfitting |
| keywords[0].score | 0.8769691586494446 |
| keywords[0].display_name | Overfitting |
| keywords[1].id | https://openalex.org/keywords/boosting |
| keywords[1].score | 0.8525099754333496 |
| keywords[1].display_name | Boosting (machine learning) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7110176086425781 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.6727078557014465 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6308872699737549 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5708928108215332 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/skewness |
| keywords[6].score | 0.5194917917251587 |
| keywords[6].display_name | Skewness |
| keywords[7].id | https://openalex.org/keywords/random-forest |
| keywords[7].score | 0.5104150176048279 |
| keywords[7].display_name | Random forest |
| keywords[8].id | https://openalex.org/keywords/regression |
| keywords[8].score | 0.5002613067626953 |
| keywords[8].display_name | Regression |
| keywords[9].id | https://openalex.org/keywords/ensemble-learning |
| keywords[9].score | 0.48606517910957336 |
| keywords[9].display_name | Ensemble learning |
| keywords[10].id | https://openalex.org/keywords/consistency |
| keywords[10].score | 0.4490424692630768 |
| keywords[10].display_name | Consistency (knowledge bases) |
| keywords[11].id | https://openalex.org/keywords/gradient-boosting |
| keywords[11].score | 0.42495211958885193 |
| keywords[11].display_name | Gradient boosting |
| keywords[12].id | https://openalex.org/keywords/residual |
| keywords[12].score | 0.4203316569328308 |
| keywords[12].display_name | Residual |
| keywords[13].id | https://openalex.org/keywords/sampling |
| keywords[13].score | 0.41360458731651306 |
| keywords[13].display_name | Sampling (signal processing) |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.3454577624797821 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/econometrics |
| keywords[15].score | 0.1798122525215149 |
| keywords[15].display_name | Econometrics |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.17318055033683777 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/statistics |
| keywords[17].score | 0.17152947187423706 |
| keywords[17].display_name | Statistics |
| keywords[18].id | https://openalex.org/keywords/algorithm |
| keywords[18].score | 0.14690282940864563 |
| keywords[18].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.12044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.12044 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.12044 |
| locations[1].id | doi:10.48550/arxiv.2204.12044 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.12044 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5102722253 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5160-2226 |
| authorships[0].author.display_name | Shrey Gupta |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Gupta, Shrey |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5002516787 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3807-6927 |
| authorships[1].author.display_name | Jianzhao Bi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bi, Jianzhao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100355692 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7300-9215 |
| authorships[2].author.display_name | Yang Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Yang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5081354146 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9457-8863 |
| authorships[3].author.display_name | Avani Wildani |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wildani, Avani |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.12044 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | ISTRBoost: Importance Sampling Transfer Regression using Boosting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2393964553, https://openalex.org/W2967733078, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W2885778889, https://openalex.org/W2766514146, https://openalex.org/W4289703016, https://openalex.org/W2885516856, https://openalex.org/W4296079469 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.12044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.12044 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.12044 |
| primary_location.id | pmh:oai:arXiv.org:2204.12044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.12044 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.12044 |
| publication_date | 2022-04-26 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 39, 104, 127 |
| abstract_inverted_index.It | 160 |
| abstract_inverted_index.We | 102, 147 |
| abstract_inverted_index.as | 68, 70, 173 |
| abstract_inverted_index.be | 89 |
| abstract_inverted_index.by | 53, 113 |
| abstract_inverted_index.if | 34 |
| abstract_inverted_index.in | 20, 74, 164 |
| abstract_inverted_index.is | 62, 93, 126 |
| abstract_inverted_index.of | 51, 81, 157 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.or | 29 |
| abstract_inverted_index.to | 12, 47, 78, 99, 110, 138, 143, 175 |
| abstract_inverted_index.ITL | 119 |
| abstract_inverted_index.Our | 124 |
| abstract_inverted_index.and | 9, 96, 106, 129 |
| abstract_inverted_index.can | 88, 97 |
| abstract_inverted_index.due | 77, 142 |
| abstract_inverted_index.fix | 109 |
| abstract_inverted_index.for | 180 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.its | 165 |
| abstract_inverted_index.the | 26, 35, 49, 72, 79, 82, 86, 91, 116, 140, 144, 158, 176 |
| abstract_inverted_index.use | 6 |
| abstract_inverted_index.also | 161 |
| abstract_inverted_index.been | 45 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.have | 44 |
| abstract_inverted_index.high | 40 |
| abstract_inverted_index.lead | 98 |
| abstract_inverted_index.more | 94, 107 |
| abstract_inverted_index.over | 167 |
| abstract_inverted_index.risk | 50 |
| abstract_inverted_index.show | 148 |
| abstract_inverted_index.size | 80 |
| abstract_inverted_index.test | 36 |
| abstract_inverted_index.than | 151 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.this | 60, 111 |
| abstract_inverted_index.upon | 115 |
| abstract_inverted_index.well | 69 |
| abstract_inverted_index.with | 57, 65, 170 |
| abstract_inverted_index.(ITL) | 4 |
| abstract_inverted_index.While | 85 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.other | 181 |
| abstract_inverted_index.shown | 46 |
| abstract_inverted_index.their | 21 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.time. | 159 |
| abstract_inverted_index.$63\%$ | 156 |
| abstract_inverted_index.better | 150 |
| abstract_inverted_index.domain | 7 |
| abstract_inverted_index.former | 87 |
| abstract_inverted_index.latter | 92 |
| abstract_inverted_index.reduce | 48, 139 |
| abstract_inverted_index.robust | 108 |
| abstract_inverted_index.source | 83, 145 |
| abstract_inverted_index.suffer | 30 |
| abstract_inverted_index.target | 27 |
| abstract_inverted_index.Current | 0 |
| abstract_inverted_index.achieve | 13 |
| abstract_inverted_index.balance | 61 |
| abstract_inverted_index.dataset | 28, 37 |
| abstract_inverted_index.diverse | 168 |
| abstract_inverted_index.opposed | 174 |
| abstract_inverted_index.overfit | 24 |
| abstract_inverted_index.popular | 117 |
| abstract_inverted_index.problem | 112 |
| abstract_inverted_index.results | 178 |
| abstract_inverted_index.simpler | 105 |
| abstract_inverted_index.usually | 63 |
| abstract_inverted_index.varying | 171 |
| abstract_inverted_index.weights | 75 |
| abstract_inverted_index.Boosting | 42 |
| abstract_inverted_index.However, | 17, 59 |
| abstract_inverted_index.Instance | 1 |
| abstract_inverted_index.Learning | 3 |
| abstract_inverted_index.Transfer | 2 |
| abstract_inverted_index.achieved | 64 |
| abstract_inverted_index.boosting | 118, 128 |
| abstract_inverted_index.building | 114 |
| abstract_inverted_index.dataset. | 84, 146 |
| abstract_inverted_index.datasets | 169 |
| abstract_inverted_index.displays | 162 |
| abstract_inverted_index.ensemble | 132 |
| abstract_inverted_index.learning | 154, 183 |
| abstract_inverted_index.negative | 32, 100 |
| abstract_inverted_index.observed | 179 |
| abstract_inverted_index.produced | 76 |
| abstract_inverted_index.reducing | 71 |
| abstract_inverted_index.sampling | 137 |
| abstract_inverted_index.skewness | 73, 141 |
| abstract_inverted_index.sporadic | 177 |
| abstract_inverted_index.transfer | 15, 33, 153, 182 |
| abstract_inverted_index.utilizes | 135 |
| abstract_inverted_index.achieved, | 90 |
| abstract_inverted_index.instances | 56 |
| abstract_inverted_index.introduce | 103 |
| abstract_inverted_index.learning. | 16 |
| abstract_inverted_index.parameter | 66 |
| abstract_inverted_index.sometimes | 23 |
| abstract_inverted_index.sub-space | 10 |
| abstract_inverted_index.transfer. | 101 |
| abstract_inverted_index.two-stage | 122 |
| abstract_inverted_index.variance. | 41 |
| abstract_inverted_index.adaptation | 8 |
| abstract_inverted_index.importance | 136 |
| abstract_inverted_index.processes, | 22 |
| abstract_inverted_index.regression | 120 |
| abstract_inverted_index.successful | 14 |
| abstract_inverted_index.challenging | 95 |
| abstract_inverted_index.competitive | 152 |
| abstract_inverted_index.consistency | 163 |
| abstract_inverted_index.iteratively | 54 |
| abstract_inverted_index.methodology | 133 |
| abstract_inverted_index.overfitting | 52 |
| abstract_inverted_index.performance | 166 |
| abstract_inverted_index.re-weighing | 55 |
| abstract_inverted_index.methodology, | 121 |
| abstract_inverted_index.complexities, | 172 |
| abstract_inverted_index.methodologies | 5, 43, 155 |
| abstract_inverted_index.optimization, | 67 |
| abstract_inverted_index.random-forest | 130 |
| abstract_inverted_index.TrAdaBoost.R2. | 123 |
| abstract_inverted_index.high-residual. | 58 |
| abstract_inverted_index.methodologies, | 19 |
| abstract_inverted_index.methodologies. | 184 |
| abstract_inverted_index.transformation | 11 |
| abstract_inverted_index.methodology,~\us{}, | 125 |
| abstract_inverted_index.that~\us{}~performs | 149 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6200000047683716 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile |