Iterative alignment discovery of speech-associated neural activity Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1741-2552/ad663c
Objective . Brain–computer interfaces (BCIs) have the potential to preserve or restore speech in patients with neurological disorders that weaken the muscles involved in speech production. However, successful training of low-latency speech synthesis and recognition models requires alignment of neural activity with intended phonetic or acoustic output with high temporal precision. This is particularly challenging in patients who cannot produce audible speech, as ground truth with which to pinpoint neural activity synchronized with speech is not available. Approach . In this study, we present a new iterative algorithm for neural voice activity detection (nVAD) called iterative alignment discovery dynamic time warping (IAD-DTW) that integrates DTW into the loss function of a deep neural network (DNN). The algorithm is designed to discover the alignment between a patient’s electrocorticographic (ECoG) neural responses and their attempts to speak during collection of data for training BCI decoders for speech synthesis and recognition. Main results . To demonstrate the effectiveness of the algorithm, we tested its accuracy in predicting the onset and duration of acoustic signals produced by able-bodied patients with intact speech undergoing short-term diagnostic ECoG recordings for epilepsy surgery. We simulated a lack of ground truth by randomly perturbing the temporal correspondence between neural activity and an initial single estimate for all speech onsets and durations. We examined the model’s ability to overcome these perturbations to estimate ground truth. IAD-DTW showed no notable degradation (<1% absolute decrease in accuracy) in performance in these simulations, even in the case of maximal misalignments between speech and silence. Significance . IAD-DTW is computationally inexpensive and can be easily integrated into existing DNN-based nVAD approaches, as it pertains only to the final loss computation. This approach makes it possible to train speech BCI algorithms using ECoG data from patients who are unable to produce audible speech, including those with Locked-In Syndrome.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1741-2552/ad663c
- OA Status
- hybrid
- Cited By
- 6
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401957392
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401957392Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1741-2552/ad663cDigital Object Identifier
- Title
-
Iterative alignment discovery of speech-associated neural activityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-01Full publication date if available
- Authors
-
Qinwan Rabbani, Samyak Shah, Griffin Milsap, Matthew S. Fifer, Hynek Heřmanský, Nathan E. CroneList of authors in order
- Landing page
-
https://doi.org/10.1088/1741-2552/ad663cPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1741-2552/ad663cDirect OA link when available
- Concepts
-
Computer science, Speech recognition, Dynamic time warping, Latency (audio), Ground truth, Artificial neural network, Neural activity, Speech production, Artificial intelligence, Recurrent neural network, Pattern recognition (psychology), Neuroscience, Telecommunications, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401957392 |
|---|---|
| doi | https://doi.org/10.1088/1741-2552/ad663c |
| ids.doi | https://doi.org/10.1088/1741-2552/ad663c |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39194182 |
| ids.openalex | https://openalex.org/W4401957392 |
| fwci | 4.21680338 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D062207 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Brain-Computer Interfaces |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D013060 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Speech |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D000069280 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Electrocorticography |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D005260 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Female |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000328 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Adult |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D016571 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Neural Networks, Computer |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D062207 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Brain-Computer Interfaces |
| mesh[11].qualifier_ui | Q000502 |
| mesh[11].descriptor_ui | D013060 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | physiology |
| mesh[11].descriptor_name | Speech |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000465 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Algorithms |
| mesh[13].qualifier_ui | Q000379 |
| mesh[13].descriptor_ui | D000069280 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | methods |
| mesh[13].descriptor_name | Electrocorticography |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D008297 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Male |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D005260 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Female |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000328 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Adult |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D006801 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Humans |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D062207 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Brain-Computer Interfaces |
| mesh[20].qualifier_ui | Q000502 |
| mesh[20].descriptor_ui | D013060 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | physiology |
| mesh[20].descriptor_name | Speech |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000465 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Algorithms |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D000069280 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Electrocorticography |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008297 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Male |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D005260 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Female |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000328 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Adult |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D016571 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Neural Networks, Computer |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D006801 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Humans |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D062207 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Brain-Computer Interfaces |
| mesh[29].qualifier_ui | Q000502 |
| mesh[29].descriptor_ui | D013060 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | physiology |
| mesh[29].descriptor_name | Speech |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000465 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Algorithms |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D000069280 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Electrocorticography |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D008297 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Male |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D005260 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Female |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000328 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Adult |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D016571 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Neural Networks, Computer |
| type | article |
| title | Iterative alignment discovery of speech-associated neural activity |
| awards[0].id | https://openalex.org/G1423484983 |
| awards[0].funder_id | https://openalex.org/F4320337359 |
| awards[0].display_name | |
| awards[0].funder_award_id | UH3NS114439 |
| awards[0].funder_display_name | National Institute of Neurological Disorders and Stroke |
| biblio.issue | 4 |
| biblio.volume | 21 |
| biblio.last_page | 046056 |
| biblio.first_page | 046056 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.982200026512146 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| funders[0].id | https://openalex.org/F4320337359 |
| funders[0].ror | https://ror.org/01s5ya894 |
| funders[0].display_name | National Institute of Neurological Disorders and Stroke |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7972240447998047 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C28490314 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6961237788200378 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[1].display_name | Speech recognition |
| concepts[2].id | https://openalex.org/C88516994 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6355189085006714 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1268863 |
| concepts[2].display_name | Dynamic time warping |
| concepts[3].id | https://openalex.org/C82876162 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6164344549179077 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17096504 |
| concepts[3].display_name | Latency (audio) |
| concepts[4].id | https://openalex.org/C146849305 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5837538242340088 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[4].display_name | Ground truth |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5646815896034241 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C2984127161 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49684908986091614 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q969316 |
| concepts[6].display_name | Neural activity |
| concepts[7].id | https://openalex.org/C43617652 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4558791220188141 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7575399 |
| concepts[7].display_name | Speech production |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4349290728569031 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C147168706 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4242444932460785 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[9].display_name | Recurrent neural network |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3695841431617737 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C169760540 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0878380537033081 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[11].display_name | Neuroscience |
| concepts[12].id | https://openalex.org/C76155785 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[12].display_name | Telecommunications |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7972240447998047 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/speech-recognition |
| keywords[1].score | 0.6961237788200378 |
| keywords[1].display_name | Speech recognition |
| keywords[2].id | https://openalex.org/keywords/dynamic-time-warping |
| keywords[2].score | 0.6355189085006714 |
| keywords[2].display_name | Dynamic time warping |
| keywords[3].id | https://openalex.org/keywords/latency |
| keywords[3].score | 0.6164344549179077 |
| keywords[3].display_name | Latency (audio) |
| keywords[4].id | https://openalex.org/keywords/ground-truth |
| keywords[4].score | 0.5837538242340088 |
| keywords[4].display_name | Ground truth |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5646815896034241 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/neural-activity |
| keywords[6].score | 0.49684908986091614 |
| keywords[6].display_name | Neural activity |
| keywords[7].id | https://openalex.org/keywords/speech-production |
| keywords[7].score | 0.4558791220188141 |
| keywords[7].display_name | Speech production |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4349290728569031 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[9].score | 0.4242444932460785 |
| keywords[9].display_name | Recurrent neural network |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3695841431617737 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/neuroscience |
| keywords[11].score | 0.0878380537033081 |
| keywords[11].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.1088/1741-2552/ad663c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S32898093 |
| locations[0].source.issn | 1741-2552, 1741-2560 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1741-2552 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Neural Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Neural Engineering |
| locations[0].landing_page_url | https://doi.org/10.1088/1741-2552/ad663c |
| locations[1].id | pmid:39194182 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of neural engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39194182 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11351572 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Neural Eng |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11351572 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5023369660 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0514-6557 |
| authorships[0].author.display_name | Qinwan Rabbani |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America. |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qinwan Rabbani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America. |
| authorships[1].author.id | https://openalex.org/A5085872377 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5940-3398 |
| authorships[1].author.display_name | Samyak Shah |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America. |
| authorships[1].institutions[0].id | https://openalex.org/I2799853436 |
| authorships[1].institutions[0].ror | https://ror.org/037zgn354 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799853436 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins Medicine |
| authorships[1].institutions[1].id | https://openalex.org/I145311948 |
| authorships[1].institutions[1].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Samyak Shah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America. |
| authorships[2].author.id | https://openalex.org/A5060670102 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2848-1032 |
| authorships[2].author.display_name | Griffin Milsap |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802946424 |
| authorships[2].affiliations[0].raw_affiliation_string | Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America. |
| authorships[2].institutions[0].id | https://openalex.org/I2802946424 |
| authorships[2].institutions[0].ror | https://ror.org/029pp9z10 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948, https://openalex.org/I2802946424 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University Applied Physics Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Griffin Milsap |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America. |
| authorships[3].author.id | https://openalex.org/A5032738214 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3425-7552 |
| authorships[3].author.display_name | Matthew S. Fifer |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2802946424 |
| authorships[3].affiliations[0].raw_affiliation_string | Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America. |
| authorships[3].institutions[0].id | https://openalex.org/I2802946424 |
| authorships[3].institutions[0].ror | https://ror.org/029pp9z10 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948, https://openalex.org/I2802946424 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University Applied Physics Laboratory |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Matthew Fifer |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America. |
| authorships[4].author.id | https://openalex.org/A5042260050 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8032-4811 |
| authorships[4].author.display_name | Hynek Heřmanský |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America. |
| authorships[4].institutions[0].id | https://openalex.org/I145311948 |
| authorships[4].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Johns Hopkins University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hynek Hermansky |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America. |
| authorships[5].author.id | https://openalex.org/A5052150651 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7950-2617 |
| authorships[5].author.display_name | Nathan E. Crone |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145311948, https://openalex.org/I2799853436 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America. |
| authorships[5].institutions[0].id | https://openalex.org/I2799853436 |
| authorships[5].institutions[0].ror | https://ror.org/037zgn354 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799853436 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Johns Hopkins Medicine |
| authorships[5].institutions[1].id | https://openalex.org/I145311948 |
| authorships[5].institutions[1].ror | https://ror.org/00za53h95 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I145311948 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Johns Hopkins University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Nathan Crone |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1741-2552/ad663c |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Iterative alignment discovery of speech-associated neural activity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2341338763, https://openalex.org/W2950183183, https://openalex.org/W2030799363, https://openalex.org/W2032415964, https://openalex.org/W2288425735, https://openalex.org/W2349923317, https://openalex.org/W2894081631, https://openalex.org/W2986063033, https://openalex.org/W2978114332, https://openalex.org/W4323663408 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1088/1741-2552/ad663c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S32898093 |
| best_oa_location.source.issn | 1741-2552, 1741-2560 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1741-2552 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Neural Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Neural Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1741-2552/ad663c |
| primary_location.id | doi:10.1088/1741-2552/ad663c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S32898093 |
| primary_location.source.issn | 1741-2552, 1741-2560 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1741-2552 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Neural Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Neural Engineering |
| primary_location.landing_page_url | https://doi.org/10.1088/1741-2552/ad663c |
| publication_date | 2024-08-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2106006415, https://openalex.org/W2909141918, https://openalex.org/W2023134105, https://openalex.org/W6646510507, https://openalex.org/W2916185079, https://openalex.org/W6806764508, https://openalex.org/W2151544568, https://openalex.org/W1488659701, https://openalex.org/W2761532371, https://openalex.org/W2481854178, https://openalex.org/W2794504802, https://openalex.org/W3095432487, https://openalex.org/W3013691153, https://openalex.org/W3161343553, https://openalex.org/W2913144232, https://openalex.org/W2952609044, https://openalex.org/W2940585064, https://openalex.org/W2991284028, https://openalex.org/W6853417431, https://openalex.org/W3180220247, https://openalex.org/W4308523455, https://openalex.org/W4386091044, https://openalex.org/W4386100600, https://openalex.org/W4210261408, https://openalex.org/W2989663192, https://openalex.org/W6676738948, https://openalex.org/W2617453236, https://openalex.org/W6630474010, https://openalex.org/W1971959574, https://openalex.org/W2922229885, https://openalex.org/W2127141656, https://openalex.org/W2138672527, https://openalex.org/W4205549622, https://openalex.org/W2293946713, https://openalex.org/W3083554171, https://openalex.org/W6725739302, https://openalex.org/W3037340973, https://openalex.org/W3173623546, https://openalex.org/W6734312481, https://openalex.org/W6784591980, https://openalex.org/W4387897958, https://openalex.org/W3134096607, https://openalex.org/W2047016424, https://openalex.org/W3211732462, https://openalex.org/W1503176538, https://openalex.org/W2465556369, https://openalex.org/W2292251807, https://openalex.org/W4210301805, https://openalex.org/W2143946714, https://openalex.org/W4301971037, https://openalex.org/W4377089439, https://openalex.org/W1512510573, https://openalex.org/W4206386677, https://openalex.org/W3093018222, https://openalex.org/W1984535857, https://openalex.org/W2963446712, https://openalex.org/W2963405869, https://openalex.org/W4206978609 |
| referenced_works_count | 58 |
| abstract_inverted_index.. | 2, 79, 151, 254 |
| abstract_inverted_index.a | 85, 111, 125, 189 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.To | 152 |
| abstract_inverted_index.We | 187, 214 |
| abstract_inverted_index.an | 204 |
| abstract_inverted_index.as | 63, 269 |
| abstract_inverted_index.be | 261 |
| abstract_inverted_index.by | 173, 194 |
| abstract_inverted_index.in | 14, 24, 56, 163, 235, 237, 239, 243 |
| abstract_inverted_index.is | 53, 75, 118, 256 |
| abstract_inverted_index.it | 270, 281 |
| abstract_inverted_index.no | 229 |
| abstract_inverted_index.of | 30, 39, 110, 138, 156, 169, 191, 246 |
| abstract_inverted_index.or | 11, 45 |
| abstract_inverted_index.to | 9, 68, 120, 134, 219, 223, 273, 283, 296 |
| abstract_inverted_index.we | 83, 159 |
| abstract_inverted_index.BCI | 142, 286 |
| abstract_inverted_index.DTW | 105 |
| abstract_inverted_index.The | 116 |
| abstract_inverted_index.all | 209 |
| abstract_inverted_index.and | 34, 131, 147, 167, 203, 212, 251, 259 |
| abstract_inverted_index.are | 294 |
| abstract_inverted_index.can | 260 |
| abstract_inverted_index.for | 89, 140, 144, 184, 208 |
| abstract_inverted_index.its | 161 |
| abstract_inverted_index.new | 86 |
| abstract_inverted_index.not | 76 |
| abstract_inverted_index.the | 7, 21, 107, 122, 154, 157, 165, 197, 216, 244, 274 |
| abstract_inverted_index.who | 58, 293 |
| abstract_inverted_index.ECoG | 182, 289 |
| abstract_inverted_index.Main | 149 |
| abstract_inverted_index.This | 52, 278 |
| abstract_inverted_index.case | 245 |
| abstract_inverted_index.data | 139, 290 |
| abstract_inverted_index.deep | 112 |
| abstract_inverted_index.even | 242 |
| abstract_inverted_index.from | 291 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.high | 49 |
| abstract_inverted_index.into | 106, 264 |
| abstract_inverted_index.lack | 190 |
| abstract_inverted_index.loss | 108, 276 |
| abstract_inverted_index.nVAD | 267 |
| abstract_inverted_index.only | 272 |
| abstract_inverted_index.that | 19, 103 |
| abstract_inverted_index.this | 81 |
| abstract_inverted_index.time | 100 |
| abstract_inverted_index.with | 16, 42, 48, 66, 73, 176, 302 |
| abstract_inverted_index.final | 275 |
| abstract_inverted_index.makes | 280 |
| abstract_inverted_index.onset | 166 |
| abstract_inverted_index.speak | 135 |
| abstract_inverted_index.their | 132 |
| abstract_inverted_index.these | 221, 240 |
| abstract_inverted_index.those | 301 |
| abstract_inverted_index.train | 284 |
| abstract_inverted_index.truth | 65, 193 |
| abstract_inverted_index.using | 288 |
| abstract_inverted_index.voice | 91 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.(BCIs) | 5 |
| abstract_inverted_index.(DNN). | 115 |
| abstract_inverted_index.(ECoG) | 128 |
| abstract_inverted_index.(nVAD) | 94 |
| abstract_inverted_index.called | 95 |
| abstract_inverted_index.cannot | 59 |
| abstract_inverted_index.during | 136 |
| abstract_inverted_index.easily | 262 |
| abstract_inverted_index.ground | 64, 192, 225 |
| abstract_inverted_index.intact | 177 |
| abstract_inverted_index.models | 36 |
| abstract_inverted_index.neural | 40, 70, 90, 113, 129, 201 |
| abstract_inverted_index.onsets | 211 |
| abstract_inverted_index.output | 47 |
| abstract_inverted_index.showed | 228 |
| abstract_inverted_index.single | 206 |
| abstract_inverted_index.speech | 13, 25, 32, 74, 145, 178, 210, 250, 285 |
| abstract_inverted_index.study, | 82 |
| abstract_inverted_index.tested | 160 |
| abstract_inverted_index.truth. | 226 |
| abstract_inverted_index.unable | 295 |
| abstract_inverted_index.weaken | 20 |
| abstract_inverted_index.(<1% | 232 |
| abstract_inverted_index.IAD-DTW | 227, 255 |
| abstract_inverted_index.ability | 218 |
| abstract_inverted_index.audible | 61, 298 |
| abstract_inverted_index.between | 124, 200, 249 |
| abstract_inverted_index.dynamic | 99 |
| abstract_inverted_index.initial | 205 |
| abstract_inverted_index.maximal | 247 |
| abstract_inverted_index.muscles | 22 |
| abstract_inverted_index.network | 114 |
| abstract_inverted_index.notable | 230 |
| abstract_inverted_index.present | 84 |
| abstract_inverted_index.produce | 60, 297 |
| abstract_inverted_index.restore | 12 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.signals | 171 |
| abstract_inverted_index.speech, | 62, 299 |
| abstract_inverted_index.warping | 101 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Approach | 78 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.absolute | 233 |
| abstract_inverted_index.accuracy | 162 |
| abstract_inverted_index.acoustic | 46, 170 |
| abstract_inverted_index.activity | 41, 71, 92, 202 |
| abstract_inverted_index.approach | 279 |
| abstract_inverted_index.attempts | 133 |
| abstract_inverted_index.decoders | 143 |
| abstract_inverted_index.decrease | 234 |
| abstract_inverted_index.designed | 119 |
| abstract_inverted_index.discover | 121 |
| abstract_inverted_index.duration | 168 |
| abstract_inverted_index.epilepsy | 185 |
| abstract_inverted_index.estimate | 207, 224 |
| abstract_inverted_index.examined | 215 |
| abstract_inverted_index.existing | 265 |
| abstract_inverted_index.function | 109 |
| abstract_inverted_index.intended | 43 |
| abstract_inverted_index.involved | 23 |
| abstract_inverted_index.overcome | 220 |
| abstract_inverted_index.patients | 15, 57, 175, 292 |
| abstract_inverted_index.pertains | 271 |
| abstract_inverted_index.phonetic | 44 |
| abstract_inverted_index.pinpoint | 69 |
| abstract_inverted_index.possible | 282 |
| abstract_inverted_index.preserve | 10 |
| abstract_inverted_index.produced | 172 |
| abstract_inverted_index.randomly | 195 |
| abstract_inverted_index.requires | 37 |
| abstract_inverted_index.silence. | 252 |
| abstract_inverted_index.surgery. | 186 |
| abstract_inverted_index.temporal | 50, 198 |
| abstract_inverted_index.training | 29, 141 |
| abstract_inverted_index.(IAD-DTW) | 102 |
| abstract_inverted_index.DNN-based | 266 |
| abstract_inverted_index.Locked-In | 303 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.Syndrome. | 304 |
| abstract_inverted_index.accuracy) | 236 |
| abstract_inverted_index.algorithm | 88, 117 |
| abstract_inverted_index.alignment | 38, 97, 123 |
| abstract_inverted_index.detection | 93 |
| abstract_inverted_index.discovery | 98 |
| abstract_inverted_index.disorders | 18 |
| abstract_inverted_index.including | 300 |
| abstract_inverted_index.iterative | 87, 96 |
| abstract_inverted_index.model’s | 217 |
| abstract_inverted_index.potential | 8 |
| abstract_inverted_index.responses | 130 |
| abstract_inverted_index.simulated | 188 |
| abstract_inverted_index.synthesis | 33, 146 |
| abstract_inverted_index.algorithm, | 158 |
| abstract_inverted_index.algorithms | 287 |
| abstract_inverted_index.available. | 77 |
| abstract_inverted_index.collection | 137 |
| abstract_inverted_index.diagnostic | 181 |
| abstract_inverted_index.durations. | 213 |
| abstract_inverted_index.integrated | 263 |
| abstract_inverted_index.integrates | 104 |
| abstract_inverted_index.interfaces | 4 |
| abstract_inverted_index.perturbing | 196 |
| abstract_inverted_index.precision. | 51 |
| abstract_inverted_index.predicting | 164 |
| abstract_inverted_index.recordings | 183 |
| abstract_inverted_index.short-term | 180 |
| abstract_inverted_index.successful | 28 |
| abstract_inverted_index.undergoing | 179 |
| abstract_inverted_index.able-bodied | 174 |
| abstract_inverted_index.approaches, | 268 |
| abstract_inverted_index.challenging | 55 |
| abstract_inverted_index.degradation | 231 |
| abstract_inverted_index.demonstrate | 153 |
| abstract_inverted_index.inexpensive | 258 |
| abstract_inverted_index.low-latency | 31 |
| abstract_inverted_index.patient’s | 126 |
| abstract_inverted_index.performance | 238 |
| abstract_inverted_index.production. | 26 |
| abstract_inverted_index.recognition | 35 |
| abstract_inverted_index.Significance | 253 |
| abstract_inverted_index.computation. | 277 |
| abstract_inverted_index.neurological | 17 |
| abstract_inverted_index.particularly | 54 |
| abstract_inverted_index.recognition. | 148 |
| abstract_inverted_index.simulations, | 241 |
| abstract_inverted_index.synchronized | 72 |
| abstract_inverted_index.effectiveness | 155 |
| abstract_inverted_index.misalignments | 248 |
| abstract_inverted_index.perturbations | 222 |
| abstract_inverted_index.correspondence | 199 |
| abstract_inverted_index.computationally | 257 |
| abstract_inverted_index.Brain–computer | 3 |
| abstract_inverted_index.electrocorticographic | 127 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.90651725 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |