Iterative Camera-LiDAR Extrinsic Optimization via Surrogate Diffusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.14706
Cameras and LiDAR are essential sensors for autonomous vehicles. The fusion of camera and LiDAR data addresses the limitations of individual sensors but relies on precise extrinsic calibration. Recently, numerous end-to-end calibration methods have been proposed; however, most predict extrinsic parameters in a single step and lack iterative optimization capabilities. To address the increasing demand for higher accuracy, we propose a versatile iterative framework based on surrogate diffusion. This framework can enhance the performance of any calibration method without requiring architectural modifications. Specifically, the initial extrinsic parameters undergo iterative refinement through a denoising process, in which the original calibration method serves as a surrogate denoiser to estimate the final extrinsics at each step. For comparative analysis, we selected four state-of-the-art calibration methods as surrogate denoisers and compared the results of our diffusion process with those of two other iterative approaches. Extensive experiments demonstrate that when integrated with our diffusion model, all calibration methods achieve higher accuracy, improved robustness, and greater stability compared to other iterative techniques and their single-step counterparts.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.14706
- https://arxiv.org/pdf/2506.14706
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415343232
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415343232Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.14706Digital Object Identifier
- Title
-
Iterative Camera-LiDAR Extrinsic Optimization via Surrogate DiffusionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Ni Ou, Zhuo Chen, Xinru Zhang, Junzheng WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.14706Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.14706Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.14706Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415343232 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.14706 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.14706 |
| ids.openalex | https://openalex.org/W4415343232 |
| fwci | |
| type | preprint |
| title | Iterative Camera-LiDAR Extrinsic Optimization via Surrogate Diffusion |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9951000213623047 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9904999732971191 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9876000285148621 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.14706 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.14706 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.14706 |
| locations[1].id | doi:10.48550/arxiv.2506.14706 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.14706 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053216749 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2643-8989 |
| authorships[0].author.display_name | Ni Ou |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ou, Ni |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5119128853 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6828-8213 |
| authorships[1].author.display_name | Zhuo Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Zhuo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047778661 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8278-4624 |
| authorships[2].author.display_name | Xinru Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Xinru |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100697058 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7351-2643 |
| authorships[3].author.display_name | Junzheng Wang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wang, Junzheng |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.14706 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-20T00:00:00 |
| display_name | Iterative Camera-LiDAR Extrinsic Optimization via Surrogate Diffusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9951000213623047 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.14706 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.14706 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.14706 |
| primary_location.id | pmh:oai:arXiv.org:2506.14706 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.14706 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.14706 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 60, 91, 102 |
| abstract_inverted_index.To | 50 |
| abstract_inverted_index.as | 101, 122 |
| abstract_inverted_index.at | 110 |
| abstract_inverted_index.in | 41, 94 |
| abstract_inverted_index.of | 11, 19, 74, 129, 135 |
| abstract_inverted_index.on | 24, 65 |
| abstract_inverted_index.to | 105, 162 |
| abstract_inverted_index.we | 58, 116 |
| abstract_inverted_index.For | 113 |
| abstract_inverted_index.The | 9 |
| abstract_inverted_index.all | 150 |
| abstract_inverted_index.and | 1, 13, 45, 125, 158, 166 |
| abstract_inverted_index.any | 75 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.but | 22 |
| abstract_inverted_index.can | 70 |
| abstract_inverted_index.for | 6, 55 |
| abstract_inverted_index.our | 130, 147 |
| abstract_inverted_index.the | 17, 52, 72, 83, 96, 107, 127 |
| abstract_inverted_index.two | 136 |
| abstract_inverted_index.This | 68 |
| abstract_inverted_index.been | 34 |
| abstract_inverted_index.data | 15 |
| abstract_inverted_index.each | 111 |
| abstract_inverted_index.four | 118 |
| abstract_inverted_index.have | 33 |
| abstract_inverted_index.lack | 46 |
| abstract_inverted_index.most | 37 |
| abstract_inverted_index.step | 44 |
| abstract_inverted_index.that | 143 |
| abstract_inverted_index.when | 144 |
| abstract_inverted_index.with | 133, 146 |
| abstract_inverted_index.LiDAR | 2, 14 |
| abstract_inverted_index.based | 64 |
| abstract_inverted_index.final | 108 |
| abstract_inverted_index.other | 137, 163 |
| abstract_inverted_index.step. | 112 |
| abstract_inverted_index.their | 167 |
| abstract_inverted_index.those | 134 |
| abstract_inverted_index.which | 95 |
| abstract_inverted_index.camera | 12 |
| abstract_inverted_index.demand | 54 |
| abstract_inverted_index.fusion | 10 |
| abstract_inverted_index.higher | 56, 154 |
| abstract_inverted_index.method | 77, 99 |
| abstract_inverted_index.model, | 149 |
| abstract_inverted_index.relies | 23 |
| abstract_inverted_index.serves | 100 |
| abstract_inverted_index.single | 43 |
| abstract_inverted_index.Cameras | 0 |
| abstract_inverted_index.achieve | 153 |
| abstract_inverted_index.address | 51 |
| abstract_inverted_index.enhance | 71 |
| abstract_inverted_index.greater | 159 |
| abstract_inverted_index.initial | 84 |
| abstract_inverted_index.methods | 32, 121, 152 |
| abstract_inverted_index.precise | 25 |
| abstract_inverted_index.predict | 38 |
| abstract_inverted_index.process | 132 |
| abstract_inverted_index.propose | 59 |
| abstract_inverted_index.results | 128 |
| abstract_inverted_index.sensors | 5, 21 |
| abstract_inverted_index.through | 90 |
| abstract_inverted_index.undergo | 87 |
| abstract_inverted_index.without | 78 |
| abstract_inverted_index.compared | 126, 161 |
| abstract_inverted_index.denoiser | 104 |
| abstract_inverted_index.estimate | 106 |
| abstract_inverted_index.however, | 36 |
| abstract_inverted_index.improved | 156 |
| abstract_inverted_index.numerous | 29 |
| abstract_inverted_index.original | 97 |
| abstract_inverted_index.process, | 93 |
| abstract_inverted_index.selected | 117 |
| abstract_inverted_index.Extensive | 140 |
| abstract_inverted_index.Recently, | 28 |
| abstract_inverted_index.accuracy, | 57, 155 |
| abstract_inverted_index.addresses | 16 |
| abstract_inverted_index.analysis, | 115 |
| abstract_inverted_index.denoisers | 124 |
| abstract_inverted_index.denoising | 92 |
| abstract_inverted_index.diffusion | 131, 148 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.extrinsic | 26, 39, 85 |
| abstract_inverted_index.framework | 63, 69 |
| abstract_inverted_index.iterative | 47, 62, 88, 138, 164 |
| abstract_inverted_index.proposed; | 35 |
| abstract_inverted_index.requiring | 79 |
| abstract_inverted_index.stability | 160 |
| abstract_inverted_index.surrogate | 66, 103, 123 |
| abstract_inverted_index.vehicles. | 8 |
| abstract_inverted_index.versatile | 61 |
| abstract_inverted_index.autonomous | 7 |
| abstract_inverted_index.diffusion. | 67 |
| abstract_inverted_index.end-to-end | 30 |
| abstract_inverted_index.extrinsics | 109 |
| abstract_inverted_index.increasing | 53 |
| abstract_inverted_index.individual | 20 |
| abstract_inverted_index.integrated | 145 |
| abstract_inverted_index.parameters | 40, 86 |
| abstract_inverted_index.refinement | 89 |
| abstract_inverted_index.techniques | 165 |
| abstract_inverted_index.approaches. | 139 |
| abstract_inverted_index.calibration | 31, 76, 98, 120, 151 |
| abstract_inverted_index.comparative | 114 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.experiments | 141 |
| abstract_inverted_index.limitations | 18 |
| abstract_inverted_index.performance | 73 |
| abstract_inverted_index.robustness, | 157 |
| abstract_inverted_index.single-step | 168 |
| abstract_inverted_index.calibration. | 27 |
| abstract_inverted_index.optimization | 48 |
| abstract_inverted_index.Specifically, | 82 |
| abstract_inverted_index.architectural | 80 |
| abstract_inverted_index.capabilities. | 49 |
| abstract_inverted_index.counterparts. | 169 |
| abstract_inverted_index.modifications. | 81 |
| abstract_inverted_index.state-of-the-art | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |