Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis Article Swipe
Ivette Raices Cruz
,
Johan Lindström
,
Matthias C. M. Troffaes
,
Ullrika Sahlin
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.csda.2022.107558
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.csda.2022.107558
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.csda.2022.107558
- OA Status
- hybrid
- Cited By
- 18
- References
- 61
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283213141
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283213141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.csda.2022.107558Digital Object Identifier
- Title
-
Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-01Full publication date if available
- Authors
-
Ivette Raices Cruz, Johan Lindström, Matthias C. M. Troffaes, Ullrika SahlinList of authors in order
- Landing page
-
https://doi.org/10.1016/j.csda.2022.107558Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.csda.2022.107558Direct OA link when available
- Concepts
-
Markov chain Monte Carlo, Prior probability, Sampling (signal processing), Slice sampling, Bayesian probability, Bayesian inference, Gibbs sampling, Mathematics, Computer science, Algorithm, Statistics, Filter (signal processing), Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 6, 2023: 6, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
61Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283213141 |
|---|---|
| doi | https://doi.org/10.1016/j.csda.2022.107558 |
| ids.doi | https://doi.org/10.1016/j.csda.2022.107558 |
| ids.openalex | https://openalex.org/W4283213141 |
| fwci | 7.51393494 |
| type | article |
| title | Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis |
| biblio.issue | |
| biblio.volume | 176 |
| biblio.last_page | 107558 |
| biblio.first_page | 107558 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T10243 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9897000193595886 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Bayesian Inference |
| topics[2].id | https://openalex.org/T11443 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1804 |
| topics[2].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[2].display_name | Advanced Statistical Process Monitoring |
| is_xpac | False |
| apc_list.value | 3340 |
| apc_list.currency | USD |
| apc_list.value_usd | 3340 |
| apc_paid.value | 3340 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3340 |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8716504573822021 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C177769412 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6839408874511719 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[1].display_name | Prior probability |
| concepts[2].id | https://openalex.org/C140779682 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5957158207893372 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[2].display_name | Sampling (signal processing) |
| concepts[3].id | https://openalex.org/C170593435 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5948496460914612 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4128565 |
| concepts[3].display_name | Slice sampling |
| concepts[4].id | https://openalex.org/C107673813 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5644658803939819 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[4].display_name | Bayesian probability |
| concepts[5].id | https://openalex.org/C160234255 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5480476021766663 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[5].display_name | Bayesian inference |
| concepts[6].id | https://openalex.org/C158424031 |
| concepts[6].level | 3 |
| concepts[6].score | 0.545669674873352 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1191905 |
| concepts[6].display_name | Gibbs sampling |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.47009536623954773 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.43777281045913696 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.39741164445877075 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39467909932136536 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C106131492 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[11].display_name | Filter (signal processing) |
| concepts[12].id | https://openalex.org/C31972630 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[12].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.8716504573822021 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/prior-probability |
| keywords[1].score | 0.6839408874511719 |
| keywords[1].display_name | Prior probability |
| keywords[2].id | https://openalex.org/keywords/sampling |
| keywords[2].score | 0.5957158207893372 |
| keywords[2].display_name | Sampling (signal processing) |
| keywords[3].id | https://openalex.org/keywords/slice-sampling |
| keywords[3].score | 0.5948496460914612 |
| keywords[3].display_name | Slice sampling |
| keywords[4].id | https://openalex.org/keywords/bayesian-probability |
| keywords[4].score | 0.5644658803939819 |
| keywords[4].display_name | Bayesian probability |
| keywords[5].id | https://openalex.org/keywords/bayesian-inference |
| keywords[5].score | 0.5480476021766663 |
| keywords[5].display_name | Bayesian inference |
| keywords[6].id | https://openalex.org/keywords/gibbs-sampling |
| keywords[6].score | 0.545669674873352 |
| keywords[6].display_name | Gibbs sampling |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.47009536623954773 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.43777281045913696 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.39741164445877075 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.39467909932136536 |
| keywords[10].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.csda.2022.107558 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S132362803 |
| locations[0].source.issn | 0167-9473, 1872-7352 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0167-9473 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computational Statistics & Data Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational Statistics & Data Analysis |
| locations[0].landing_page_url | https://doi.org/10.1016/j.csda.2022.107558 |
| locations[1].id | pmh:oai:dro.dur.ac.uk.OAI2:36195 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400188 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Durham Research Online (Durham University) |
| locations[1].source.host_organization | https://openalex.org/I190082696 |
| locations[1].source.host_organization_name | Durham University |
| locations[1].source.host_organization_lineage | https://openalex.org/I190082696 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | Computational statistics & data analysis, 2022, Vol.176, pp.107558 [Peer Reviewed Journal] |
| locations[1].landing_page_url | http://dro.dur.ac.uk/36195/ |
| locations[2].id | pmh:oai:arXiv.org:2206.08728 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2206.08728 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2206.08728 |
| locations[3].id | pmh:oai:durham-repository.worktribe.com:1202582 |
| locations[3].is_oa | True |
| locations[3].source | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | publishedVersion |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://durham-repository.worktribe.com/output/1202582 |
| locations[4].id | pmh:oai:lup.lub.lu.se:3ffca7eb-d526-4a34-b630-61b0c0e51061 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306400536 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Lund University Publications (Lund University) |
| locations[4].source.host_organization | https://openalex.org/I187531555 |
| locations[4].source.host_organization_name | Lund University |
| locations[4].source.host_organization_lineage | https://openalex.org/I187531555 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | text |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | ISSN: 0167-9473 |
| locations[4].landing_page_url | https://lup.lub.lu.se/record/3ffca7eb-d526-4a34-b630-61b0c0e51061 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5071048238 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ivette Raices Cruz |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I187531555 |
| authorships[0].affiliations[0].raw_affiliation_string | Centre for Environmental and Climate Science, Lund University, Sweden |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I187531555 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Biology, Lund University, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I187531555 |
| authorships[0].institutions[0].ror | https://ror.org/012a77v79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I187531555 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Lund University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ivette Raices Cruz |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Centre for Environmental and Climate Science, Lund University, Sweden, Department of Biology, Lund University, Sweden |
| authorships[1].author.id | https://openalex.org/A5041935765 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9392-6053 |
| authorships[1].author.display_name | Johan Lindström |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1279596006, https://openalex.org/I187531555 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Mathematical Sciences, Lund University, Sweden |
| authorships[1].institutions[0].id | https://openalex.org/I187531555 |
| authorships[1].institutions[0].ror | https://ror.org/012a77v79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I187531555 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Lund University |
| authorships[1].institutions[1].id | https://openalex.org/I1279596006 |
| authorships[1].institutions[1].ror | https://ror.org/05x7wz523 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I1279596006 |
| authorships[1].institutions[1].country_code | SE |
| authorships[1].institutions[1].display_name | Statistics Sweden |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Johan Lindström |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Mathematical Sciences, Lund University, Sweden |
| authorships[2].author.id | https://openalex.org/A5086689994 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1294-600X |
| authorships[2].author.display_name | Matthias C. M. Troffaes |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences, Durham University, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I190082696 |
| authorships[2].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Durham University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matthias C.M. Troffaes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematical Sciences, Durham University, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5034737705 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2932-6253 |
| authorships[3].author.display_name | Ullrika Sahlin |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I187531555 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Environmental and Climate Science, Lund University, Sweden |
| authorships[3].institutions[0].id | https://openalex.org/I187531555 |
| authorships[3].institutions[0].ror | https://ror.org/012a77v79 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I187531555 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | Lund University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ullrika Sahlin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Environmental and Climate Science, Lund University, Sweden |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.csda.2022.107558 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-06-22T00:00:00 |
| display_name | Iterative importance sampling with Markov chain Monte Carlo sampling in robust Bayesian analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2072169887, https://openalex.org/W3125971950, https://openalex.org/W1580681286, https://openalex.org/W2967199651, https://openalex.org/W1539868720, https://openalex.org/W2135966539, https://openalex.org/W4288261522, https://openalex.org/W2914481316, https://openalex.org/W1526222228, https://openalex.org/W4300877486 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1016/j.csda.2022.107558 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S132362803 |
| best_oa_location.source.issn | 0167-9473, 1872-7352 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0167-9473 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computational Statistics & Data Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational Statistics & Data Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.csda.2022.107558 |
| primary_location.id | doi:10.1016/j.csda.2022.107558 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S132362803 |
| primary_location.source.issn | 0167-9473, 1872-7352 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0167-9473 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computational Statistics & Data Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational Statistics & Data Analysis |
| primary_location.landing_page_url | https://doi.org/10.1016/j.csda.2022.107558 |
| publication_date | 2022-07-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2575742565, https://openalex.org/W2067316154, https://openalex.org/W2012097495, https://openalex.org/W2106880822, https://openalex.org/W1968873062, https://openalex.org/W2963625110, https://openalex.org/W2080056247, https://openalex.org/W1983278573, https://openalex.org/W6721561580, https://openalex.org/W3101747313, https://openalex.org/W2978408855, https://openalex.org/W4248681815, https://openalex.org/W6662789159, https://openalex.org/W6746123957, https://openalex.org/W6790384565, https://openalex.org/W6774133171, https://openalex.org/W2138309709, https://openalex.org/W6681106334, https://openalex.org/W1983781823, https://openalex.org/W1648907168, https://openalex.org/W2271361270, https://openalex.org/W1864722563, https://openalex.org/W6675566198, https://openalex.org/W2067791963, https://openalex.org/W2963371806, https://openalex.org/W1487139063, https://openalex.org/W6739793043, https://openalex.org/W2776703959, https://openalex.org/W6752137783, https://openalex.org/W6637920084, https://openalex.org/W2605734975, https://openalex.org/W4297686012, https://openalex.org/W2065637266, https://openalex.org/W2808519412, https://openalex.org/W2890982543, https://openalex.org/W621546036, https://openalex.org/W2626144780, https://openalex.org/W2210692376, https://openalex.org/W2691924305, https://openalex.org/W3035994216, https://openalex.org/W3130961166, https://openalex.org/W2048971218, https://openalex.org/W2102691048, https://openalex.org/W4308690013, https://openalex.org/W3125622207, https://openalex.org/W2498246483, https://openalex.org/W4246464108, https://openalex.org/W2477917220, https://openalex.org/W4229942708, https://openalex.org/W1776415159, https://openalex.org/W2770658291, https://openalex.org/W3101320289, https://openalex.org/W2069739265, https://openalex.org/W4210427261, https://openalex.org/W3007275795, https://openalex.org/W2506156813, https://openalex.org/W2591957553, https://openalex.org/W2142230902, https://openalex.org/W3157699234, https://openalex.org/W4252185406, https://openalex.org/W128887579 |
| referenced_works_count | 61 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5071048238 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I187531555 |
| citation_normalized_percentile.value | 0.96059692 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |