Iterative structural coarse-graining for contagion dynamics in complex networks Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.20503
Contagion dynamics in complex networks drive critical phenomena such as epidemic spread and information diffusion,but their analysis remains computationally prohibitive in large-scale, high-complexity systems. Here, we introduce the Iterative Structural Coarse-Graining (ISCG) framework, a scalable methodology that reduces network complexity while preserving key contagion dynamics with high fidelity. Importantly, we derive theoretical conditions ensuring the precise preservation of both macroscopic outbreak sizes and microscopic node-level infection probabilities during network reduction. Under these conditions, extensive experiments on diverse empirical networks demonstrate that ISCG achieves significant complexity reduction without sacrificing prediction accuracy. Beyond simplification, ISCG reveals multiscale structural patterns that govern contagion processes, enabling practical solutions to longstanding challenges in contagion dynamics. Specifically, ISCG outperforms traditional adaptive centrality-based approaches in identifying influential spreaders, immunizing critical edges, and optimizing sentinel placement for early outbreak detection, offering superior accuracy and computational efficiency. By bridging computational efficiency with dynamical fidelity, ISCG provides a transformative framework for analyzing large-scale contagion processes, with broad applications for epidemiology, information dissemination, and network resilience.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.20503
- https://arxiv.org/pdf/2412.20503
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405956449
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405956449Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.20503Digital Object Identifier
- Title
-
Iterative structural coarse-graining for contagion dynamics in complex networksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-29Full publication date if available
- Authors
-
Leyang Xue, Zengru Di, An‐Ping ZengList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.20503Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.20503Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.20503Direct OA link when available
- Concepts
-
Granularity, Statistical physics, Dynamics (music), Computer science, Emotional contagion, Econometrics, Physics, Economics, Psychology, Neuroscience, Acoustics, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405956449 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.20503 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.20503 |
| ids.openalex | https://openalex.org/W4405956449 |
| fwci | |
| type | preprint |
| title | Iterative structural coarse-graining for contagion dynamics in complex networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9642000198364258 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T12536 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9254000186920166 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Topological and Geometric Data Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177774035 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8116652369499207 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1246948 |
| concepts[0].display_name | Granularity |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5313219428062439 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C145912823 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5007591247558594 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[2].display_name | Dynamics (music) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.443353533744812 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C159237981 |
| concepts[4].level | 2 |
| concepts[4].score | 0.41310346126556396 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1498207 |
| concepts[4].display_name | Emotional contagion |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3294599652290344 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.23960068821907043 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C162324750 |
| concepts[7].level | 0 |
| concepts[7].score | 0.22353893518447876 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[7].display_name | Economics |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.21508145332336426 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C169760540 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15982669591903687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[9].display_name | Neuroscience |
| concepts[10].id | https://openalex.org/C24890656 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[10].display_name | Acoustics |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/granularity |
| keywords[0].score | 0.8116652369499207 |
| keywords[0].display_name | Granularity |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.5313219428062439 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/dynamics |
| keywords[2].score | 0.5007591247558594 |
| keywords[2].display_name | Dynamics (music) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.443353533744812 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/emotional-contagion |
| keywords[4].score | 0.41310346126556396 |
| keywords[4].display_name | Emotional contagion |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.3294599652290344 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.23960068821907043 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/economics |
| keywords[7].score | 0.22353893518447876 |
| keywords[7].display_name | Economics |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.21508145332336426 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/neuroscience |
| keywords[9].score | 0.15982669591903687 |
| keywords[9].display_name | Neuroscience |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.20503 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.20503 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.20503 |
| locations[1].id | doi:10.48550/arxiv.2412.20503 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.20503 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101701660 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9304-7438 |
| authorships[0].author.display_name | Leyang Xue |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xue, Leyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102710973 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5240-298X |
| authorships[1].author.display_name | Zengru Di |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Di, Zengru |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014819722 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9768-7096 |
| authorships[2].author.display_name | An‐Ping Zeng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zeng, An |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.20503 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-01T00:00:00 |
| display_name | Iterative structural coarse-graining for contagion dynamics in complex networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9642000198364258 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W2931688134, https://openalex.org/W2377919138, https://openalex.org/W2378857091, https://openalex.org/W103652678, https://openalex.org/W4226090359, https://openalex.org/W2059697060, https://openalex.org/W936373746, https://openalex.org/W2975817033, https://openalex.org/W4256502920, https://openalex.org/W1991083800 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.20503 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.20503 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.20503 |
| primary_location.id | pmh:oai:arXiv.org:2412.20503 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.20503 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.20503 |
| publication_date | 2024-12-29 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 33, 147 |
| abstract_inverted_index.By | 138 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.in | 2, 20, 107, 117 |
| abstract_inverted_index.of | 57 |
| abstract_inverted_index.on | 75 |
| abstract_inverted_index.to | 104 |
| abstract_inverted_index.we | 25, 49 |
| abstract_inverted_index.and | 12, 62, 124, 135, 162 |
| abstract_inverted_index.for | 128, 150, 158 |
| abstract_inverted_index.key | 42 |
| abstract_inverted_index.the | 27, 54 |
| abstract_inverted_index.ISCG | 81, 92, 111, 145 |
| abstract_inverted_index.both | 58 |
| abstract_inverted_index.high | 46 |
| abstract_inverted_index.such | 8 |
| abstract_inverted_index.that | 36, 80, 97 |
| abstract_inverted_index.with | 45, 142, 155 |
| abstract_inverted_index.Here, | 24 |
| abstract_inverted_index.Under | 70 |
| abstract_inverted_index.broad | 156 |
| abstract_inverted_index.drive | 5 |
| abstract_inverted_index.early | 129 |
| abstract_inverted_index.sizes | 61 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.these | 71 |
| abstract_inverted_index.while | 40 |
| abstract_inverted_index.(ISCG) | 31 |
| abstract_inverted_index.Beyond | 90 |
| abstract_inverted_index.derive | 50 |
| abstract_inverted_index.during | 67 |
| abstract_inverted_index.edges, | 123 |
| abstract_inverted_index.govern | 98 |
| abstract_inverted_index.spread | 11 |
| abstract_inverted_index.complex | 3 |
| abstract_inverted_index.diverse | 76 |
| abstract_inverted_index.network | 38, 68, 163 |
| abstract_inverted_index.precise | 55 |
| abstract_inverted_index.reduces | 37 |
| abstract_inverted_index.remains | 17 |
| abstract_inverted_index.reveals | 93 |
| abstract_inverted_index.without | 86 |
| abstract_inverted_index.accuracy | 134 |
| abstract_inverted_index.achieves | 82 |
| abstract_inverted_index.adaptive | 114 |
| abstract_inverted_index.analysis | 16 |
| abstract_inverted_index.bridging | 139 |
| abstract_inverted_index.critical | 6, 122 |
| abstract_inverted_index.dynamics | 1, 44 |
| abstract_inverted_index.enabling | 101 |
| abstract_inverted_index.ensuring | 53 |
| abstract_inverted_index.epidemic | 10 |
| abstract_inverted_index.networks | 4, 78 |
| abstract_inverted_index.offering | 132 |
| abstract_inverted_index.outbreak | 60, 130 |
| abstract_inverted_index.patterns | 96 |
| abstract_inverted_index.provides | 146 |
| abstract_inverted_index.scalable | 34 |
| abstract_inverted_index.sentinel | 126 |
| abstract_inverted_index.superior | 133 |
| abstract_inverted_index.systems. | 23 |
| abstract_inverted_index.Contagion | 0 |
| abstract_inverted_index.Iterative | 28 |
| abstract_inverted_index.accuracy. | 89 |
| abstract_inverted_index.analyzing | 151 |
| abstract_inverted_index.contagion | 43, 99, 108, 153 |
| abstract_inverted_index.dynamical | 143 |
| abstract_inverted_index.dynamics. | 109 |
| abstract_inverted_index.empirical | 77 |
| abstract_inverted_index.extensive | 73 |
| abstract_inverted_index.fidelity, | 144 |
| abstract_inverted_index.fidelity. | 47 |
| abstract_inverted_index.framework | 149 |
| abstract_inverted_index.infection | 65 |
| abstract_inverted_index.introduce | 26 |
| abstract_inverted_index.phenomena | 7 |
| abstract_inverted_index.placement | 127 |
| abstract_inverted_index.practical | 102 |
| abstract_inverted_index.reduction | 85 |
| abstract_inverted_index.solutions | 103 |
| abstract_inverted_index.Structural | 29 |
| abstract_inverted_index.approaches | 116 |
| abstract_inverted_index.challenges | 106 |
| abstract_inverted_index.complexity | 39, 84 |
| abstract_inverted_index.conditions | 52 |
| abstract_inverted_index.detection, | 131 |
| abstract_inverted_index.efficiency | 141 |
| abstract_inverted_index.framework, | 32 |
| abstract_inverted_index.immunizing | 121 |
| abstract_inverted_index.multiscale | 94 |
| abstract_inverted_index.node-level | 64 |
| abstract_inverted_index.optimizing | 125 |
| abstract_inverted_index.prediction | 88 |
| abstract_inverted_index.preserving | 41 |
| abstract_inverted_index.processes, | 100, 154 |
| abstract_inverted_index.reduction. | 69 |
| abstract_inverted_index.spreaders, | 120 |
| abstract_inverted_index.structural | 95 |
| abstract_inverted_index.conditions, | 72 |
| abstract_inverted_index.demonstrate | 79 |
| abstract_inverted_index.efficiency. | 137 |
| abstract_inverted_index.experiments | 74 |
| abstract_inverted_index.identifying | 118 |
| abstract_inverted_index.influential | 119 |
| abstract_inverted_index.information | 13, 160 |
| abstract_inverted_index.large-scale | 152 |
| abstract_inverted_index.macroscopic | 59 |
| abstract_inverted_index.methodology | 35 |
| abstract_inverted_index.microscopic | 63 |
| abstract_inverted_index.outperforms | 112 |
| abstract_inverted_index.prohibitive | 19 |
| abstract_inverted_index.resilience. | 164 |
| abstract_inverted_index.sacrificing | 87 |
| abstract_inverted_index.significant | 83 |
| abstract_inverted_index.theoretical | 51 |
| abstract_inverted_index.traditional | 113 |
| abstract_inverted_index.Importantly, | 48 |
| abstract_inverted_index.applications | 157 |
| abstract_inverted_index.large-scale, | 21 |
| abstract_inverted_index.longstanding | 105 |
| abstract_inverted_index.preservation | 56 |
| abstract_inverted_index.Specifically, | 110 |
| abstract_inverted_index.computational | 136, 140 |
| abstract_inverted_index.diffusion,but | 14 |
| abstract_inverted_index.epidemiology, | 159 |
| abstract_inverted_index.probabilities | 66 |
| abstract_inverted_index.dissemination, | 161 |
| abstract_inverted_index.transformative | 148 |
| abstract_inverted_index.Coarse-Graining | 30 |
| abstract_inverted_index.computationally | 18 |
| abstract_inverted_index.high-complexity | 22 |
| abstract_inverted_index.simplification, | 91 |
| abstract_inverted_index.centrality-based | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |