Itinerary-aware Personalized Deep Matching at Fliggy Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1145/3442381.3449803
Matching items for a user from a travel item pool of large cardinality have been the most important technology for increasing the business at Fliggy, one of the most popular online travel platforms (OTPs) in China. There are three major challenges facing OTPs: sparsity, diversity, and implicitness. In this paper, we present a novel Fliggy ITinerary-aware deep matching NETwork (FitNET) to address these three challenges. FitNET is designed based on the popular deep matching network, which has been successfully employed in many industrial recommendation systems, due to its effectiveness. The concept itinerary is firstly proposed under the context of recommendation systems for OTPs, which is defined as the list of unconsumed orders of a user. All orders in a user itinerary are learned as a whole, based on which the implicit travel intention of each user can be more accurately inferred. To alleviate the sparsity problem, users' profiles are incorporated into FitNET. Meanwhile, a series of itinerary-aware attention mechanisms that capture the vital interactions between user's itinerary and other input categories are carefully designed. These mechanisms are very helpful in inferring a user's travel intention or preference, and handling the diversity in a user's need. Further, two training objectives, i.e., prediction accuracy of user's travel intention and prediction accuracy of user's click behavior, are utilized by FitNET, so that these two objectives can be optimized simultaneously. An offline experiment on Fliggy production dataset with over 0.27 million users and 1.55 million travel items, and an online A/B test both show that FitNET effectively learns users' travel intentions, preferences, and diverse needs, based on their itineraries and gains superior performance compared with state-of-the-art methods. FitNET now has been successfully deployed at Fliggy, serving major online traffic.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3442381.3449803
- OA Status
- gold
- Cited By
- 7
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3155477400
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3155477400Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3442381.3449803Digital Object Identifier
- Title
-
Itinerary-aware Personalized Deep Matching at FliggyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-19Full publication date if available
- Authors
-
Jia Xu, Ziyi Wang, Zulong Chen, Detao Lv, Yao Yu, Chuanfei XuList of authors in order
- Landing page
-
https://doi.org/10.1145/3442381.3449803Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1145/3442381.3449803Direct OA link when available
- Concepts
-
Computer science, Matching (statistics), Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3155477400 |
|---|---|
| doi | https://doi.org/10.1145/3442381.3449803 |
| ids.doi | https://doi.org/10.1145/3442381.3449803 |
| ids.mag | 3155477400 |
| ids.openalex | https://openalex.org/W3155477400 |
| fwci | 2.03791095 |
| type | article |
| title | Itinerary-aware Personalized Deep Matching at Fliggy |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3245 |
| biblio.first_page | 3234 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T11478 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9876000285148621 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Caching and Content Delivery |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9749000072479248 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.651045560836792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165064840 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5183799862861633 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[1].display_name | Matching (statistics) |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.09991484880447388 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.08766680955886841 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.651045560836792 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/matching |
| keywords[1].score | 0.5183799862861633 |
| keywords[1].display_name | Matching (statistics) |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.09991484880447388 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.08766680955886841 |
| keywords[3].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1145/3442381.3449803 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Web Conference 2021 |
| locations[0].landing_page_url | https://doi.org/10.1145/3442381.3449803 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042055991 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4061-8262 |
| authorships[0].author.display_name | Jia Xu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150807315 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangxi University, China |
| authorships[0].institutions[0].id | https://openalex.org/I150807315 |
| authorships[0].institutions[0].ror | https://ror.org/02c9qn167 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150807315 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangxi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jia Xu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangxi University, China |
| authorships[1].author.id | https://openalex.org/A5100441397 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-5428-0494 |
| authorships[1].author.display_name | Ziyi Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45928872 |
| authorships[1].affiliations[0].raw_affiliation_string | Alibaba Group, China |
| authorships[1].institutions[0].id | https://openalex.org/I45928872 |
| authorships[1].institutions[0].ror | https://ror.org/00k642b80 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I45928872 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Alibaba Group (China) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziyi Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Alibaba Group, China |
| authorships[2].author.id | https://openalex.org/A5053403488 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2354-2761 |
| authorships[2].author.display_name | Zulong Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45928872 |
| authorships[2].affiliations[0].raw_affiliation_string | Alibaba Group, China |
| authorships[2].institutions[0].id | https://openalex.org/I45928872 |
| authorships[2].institutions[0].ror | https://ror.org/00k642b80 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I45928872 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Alibaba Group (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zulong Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Alibaba Group, China |
| authorships[3].author.id | https://openalex.org/A5038141543 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Detao Lv |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45928872 |
| authorships[3].affiliations[0].raw_affiliation_string | Alibaba Group, China |
| authorships[3].institutions[0].id | https://openalex.org/I45928872 |
| authorships[3].institutions[0].ror | https://ror.org/00k642b80 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I45928872 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Alibaba Group (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Detao Lv |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Alibaba Group, China |
| authorships[4].author.id | https://openalex.org/A5100749121 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5879-0234 |
| authorships[4].author.display_name | Yao Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45928872 |
| authorships[4].affiliations[0].raw_affiliation_string | Alibaba Group, China |
| authorships[4].institutions[0].id | https://openalex.org/I45928872 |
| authorships[4].institutions[0].ror | https://ror.org/00k642b80 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I45928872 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Alibaba Group (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yao Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Alibaba Group, China |
| authorships[5].author.id | https://openalex.org/A5074431959 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Chuanfei Xu |
| authorships[5].countries | CA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I60158472 |
| authorships[5].affiliations[0].raw_affiliation_string | Concordia University, Canada |
| authorships[5].institutions[0].id | https://openalex.org/I60158472 |
| authorships[5].institutions[0].ror | https://ror.org/0420zvk78 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I60158472 |
| authorships[5].institutions[0].country_code | CA |
| authorships[5].institutions[0].display_name | Concordia University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chuanfei Xu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Concordia University, Canada |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1145/3442381.3449803 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Itinerary-aware Personalized Deep Matching at Fliggy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3442381.3449803 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Web Conference 2021 |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3442381.3449803 |
| primary_location.id | doi:10.1145/3442381.3449803 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Web Conference 2021 |
| primary_location.landing_page_url | https://doi.org/10.1145/3442381.3449803 |
| publication_date | 2021-04-19 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2792883393, https://openalex.org/W2085842814, https://openalex.org/W2167564468, https://openalex.org/W2512971201, https://openalex.org/W2808787330, https://openalex.org/W2605350416, https://openalex.org/W2100495367, https://openalex.org/W2963446712, https://openalex.org/W3093861115, https://openalex.org/W3036320503, https://openalex.org/W2108920354, https://openalex.org/W2963367478, https://openalex.org/W1994389483, https://openalex.org/W2982902390, https://openalex.org/W2159094788, https://openalex.org/W2987999026, https://openalex.org/W2997024057, https://openalex.org/W2074694452, https://openalex.org/W2154851992, https://openalex.org/W1720514416, https://openalex.org/W2517540742, https://openalex.org/W2100235918, https://openalex.org/W2151205619, https://openalex.org/W2157881433, https://openalex.org/W2963601856, https://openalex.org/W2892485145, https://openalex.org/W2723293840, https://openalex.org/W2783666221, https://openalex.org/W2891738770, https://openalex.org/W3104097132, https://openalex.org/W3106181667, https://openalex.org/W3098468692, https://openalex.org/W2950961224 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 3, 6, 52, 113, 118, 124, 153, 181, 192 |
| abstract_inverted_index.An | 226 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.To | 141 |
| abstract_inverted_index.an | 244 |
| abstract_inverted_index.as | 106, 123 |
| abstract_inverted_index.at | 23, 279 |
| abstract_inverted_index.be | 137, 223 |
| abstract_inverted_index.by | 215 |
| abstract_inverted_index.in | 34, 80, 117, 179, 191 |
| abstract_inverted_index.is | 66, 92, 104 |
| abstract_inverted_index.of | 10, 26, 98, 109, 112, 133, 155, 202, 209 |
| abstract_inverted_index.on | 69, 127, 229, 262 |
| abstract_inverted_index.or | 185 |
| abstract_inverted_index.so | 217 |
| abstract_inverted_index.to | 60, 86 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.A/B | 246 |
| abstract_inverted_index.All | 115 |
| abstract_inverted_index.The | 89 |
| abstract_inverted_index.and | 45, 167, 187, 206, 238, 243, 258, 265 |
| abstract_inverted_index.are | 37, 121, 148, 171, 176, 213 |
| abstract_inverted_index.can | 136, 222 |
| abstract_inverted_index.due | 85 |
| abstract_inverted_index.for | 2, 19, 101 |
| abstract_inverted_index.has | 76, 275 |
| abstract_inverted_index.its | 87 |
| abstract_inverted_index.now | 274 |
| abstract_inverted_index.one | 25 |
| abstract_inverted_index.the | 15, 21, 27, 70, 96, 107, 129, 143, 161, 189 |
| abstract_inverted_index.two | 196, 220 |
| abstract_inverted_index.0.27 | 235 |
| abstract_inverted_index.1.55 | 239 |
| abstract_inverted_index.been | 14, 77, 276 |
| abstract_inverted_index.both | 248 |
| abstract_inverted_index.deep | 56, 72 |
| abstract_inverted_index.each | 134 |
| abstract_inverted_index.from | 5 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.into | 150 |
| abstract_inverted_index.item | 8 |
| abstract_inverted_index.list | 108 |
| abstract_inverted_index.many | 81 |
| abstract_inverted_index.more | 138 |
| abstract_inverted_index.most | 16, 28 |
| abstract_inverted_index.over | 234 |
| abstract_inverted_index.pool | 9 |
| abstract_inverted_index.show | 249 |
| abstract_inverted_index.test | 247 |
| abstract_inverted_index.that | 159, 218, 250 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.user | 4, 119, 135 |
| abstract_inverted_index.very | 177 |
| abstract_inverted_index.with | 233, 270 |
| abstract_inverted_index.OTPs, | 102 |
| abstract_inverted_index.OTPs: | 42 |
| abstract_inverted_index.There | 36 |
| abstract_inverted_index.These | 174 |
| abstract_inverted_index.based | 68, 126, 261 |
| abstract_inverted_index.click | 211 |
| abstract_inverted_index.gains | 266 |
| abstract_inverted_index.i.e., | 199 |
| abstract_inverted_index.input | 169 |
| abstract_inverted_index.items | 1 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.major | 39, 282 |
| abstract_inverted_index.need. | 194 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.other | 168 |
| abstract_inverted_index.their | 263 |
| abstract_inverted_index.these | 62, 219 |
| abstract_inverted_index.three | 38, 63 |
| abstract_inverted_index.under | 95 |
| abstract_inverted_index.user. | 114 |
| abstract_inverted_index.users | 237 |
| abstract_inverted_index.vital | 162 |
| abstract_inverted_index.which | 75, 103, 128 |
| abstract_inverted_index.(OTPs) | 33 |
| abstract_inverted_index.China. | 35 |
| abstract_inverted_index.FitNET | 65, 251, 273 |
| abstract_inverted_index.Fliggy | 54, 230 |
| abstract_inverted_index.facing | 41 |
| abstract_inverted_index.items, | 242 |
| abstract_inverted_index.learns | 253 |
| abstract_inverted_index.needs, | 260 |
| abstract_inverted_index.online | 30, 245, 283 |
| abstract_inverted_index.orders | 111, 116 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.series | 154 |
| abstract_inverted_index.travel | 7, 31, 131, 183, 204, 241, 255 |
| abstract_inverted_index.user's | 165, 182, 193, 203, 210 |
| abstract_inverted_index.users' | 146, 254 |
| abstract_inverted_index.whole, | 125 |
| abstract_inverted_index.FitNET, | 216 |
| abstract_inverted_index.FitNET. | 151 |
| abstract_inverted_index.Fliggy, | 24, 280 |
| abstract_inverted_index.NETwork | 58 |
| abstract_inverted_index.address | 61 |
| abstract_inverted_index.between | 164 |
| abstract_inverted_index.capture | 160 |
| abstract_inverted_index.concept | 90 |
| abstract_inverted_index.context | 97 |
| abstract_inverted_index.dataset | 232 |
| abstract_inverted_index.defined | 105 |
| abstract_inverted_index.diverse | 259 |
| abstract_inverted_index.firstly | 93 |
| abstract_inverted_index.helpful | 178 |
| abstract_inverted_index.learned | 122 |
| abstract_inverted_index.million | 236, 240 |
| abstract_inverted_index.offline | 227 |
| abstract_inverted_index.popular | 29, 71 |
| abstract_inverted_index.present | 51 |
| abstract_inverted_index.serving | 281 |
| abstract_inverted_index.systems | 100 |
| abstract_inverted_index.(FitNET) | 59 |
| abstract_inverted_index.Further, | 195 |
| abstract_inverted_index.Matching | 0 |
| abstract_inverted_index.accuracy | 201, 208 |
| abstract_inverted_index.business | 22 |
| abstract_inverted_index.compared | 269 |
| abstract_inverted_index.deployed | 278 |
| abstract_inverted_index.designed | 67 |
| abstract_inverted_index.employed | 79 |
| abstract_inverted_index.handling | 188 |
| abstract_inverted_index.implicit | 130 |
| abstract_inverted_index.matching | 57, 73 |
| abstract_inverted_index.methods. | 272 |
| abstract_inverted_index.network, | 74 |
| abstract_inverted_index.problem, | 145 |
| abstract_inverted_index.profiles | 147 |
| abstract_inverted_index.proposed | 94 |
| abstract_inverted_index.sparsity | 144 |
| abstract_inverted_index.superior | 267 |
| abstract_inverted_index.systems, | 84 |
| abstract_inverted_index.traffic. | 284 |
| abstract_inverted_index.training | 197 |
| abstract_inverted_index.utilized | 214 |
| abstract_inverted_index.alleviate | 142 |
| abstract_inverted_index.attention | 157 |
| abstract_inverted_index.behavior, | 212 |
| abstract_inverted_index.carefully | 172 |
| abstract_inverted_index.designed. | 173 |
| abstract_inverted_index.diversity | 190 |
| abstract_inverted_index.important | 17 |
| abstract_inverted_index.inferred. | 140 |
| abstract_inverted_index.inferring | 180 |
| abstract_inverted_index.intention | 132, 184, 205 |
| abstract_inverted_index.itinerary | 91, 120, 166 |
| abstract_inverted_index.optimized | 224 |
| abstract_inverted_index.platforms | 32 |
| abstract_inverted_index.sparsity, | 43 |
| abstract_inverted_index.Meanwhile, | 152 |
| abstract_inverted_index.accurately | 139 |
| abstract_inverted_index.categories | 170 |
| abstract_inverted_index.challenges | 40 |
| abstract_inverted_index.diversity, | 44 |
| abstract_inverted_index.experiment | 228 |
| abstract_inverted_index.increasing | 20 |
| abstract_inverted_index.industrial | 82 |
| abstract_inverted_index.mechanisms | 158, 175 |
| abstract_inverted_index.objectives | 221 |
| abstract_inverted_index.prediction | 200, 207 |
| abstract_inverted_index.production | 231 |
| abstract_inverted_index.technology | 18 |
| abstract_inverted_index.unconsumed | 110 |
| abstract_inverted_index.cardinality | 12 |
| abstract_inverted_index.challenges. | 64 |
| abstract_inverted_index.effectively | 252 |
| abstract_inverted_index.intentions, | 256 |
| abstract_inverted_index.itineraries | 264 |
| abstract_inverted_index.objectives, | 198 |
| abstract_inverted_index.performance | 268 |
| abstract_inverted_index.preference, | 186 |
| abstract_inverted_index.incorporated | 149 |
| abstract_inverted_index.interactions | 163 |
| abstract_inverted_index.preferences, | 257 |
| abstract_inverted_index.successfully | 78, 277 |
| abstract_inverted_index.implicitness. | 46 |
| abstract_inverted_index.effectiveness. | 88 |
| abstract_inverted_index.recommendation | 83, 99 |
| abstract_inverted_index.ITinerary-aware | 55 |
| abstract_inverted_index.itinerary-aware | 156 |
| abstract_inverted_index.simultaneously. | 225 |
| abstract_inverted_index.state-of-the-art | 271 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.8828741 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |