iXGB: Improving the Interpretability of XGBoost Using Decision Rules and Counterfactuals Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.5220/0012474000003636
Tree-ensemble models, such as Extreme Gradient Boosting (XGBoost), are renowned Machine Learning models which have higher prediction accuracy compared to traditional tree-based models. This higher accuracy, however, comes at the cost of reduced interpretability. Also, the decision path or prediction rule of XGBoost is not explicit like the tree-based models. This paper proposes the iXGB--interpretable XGBoost, an approach to improve the interpretability of XGBoost. iXGB approximates a set of rules from the internal structure of XGBoost and the characteristics of the data. In addition, iXGB generates a set of counterfactuals from the neighbourhood of the test instances to support the understanding of the end-users on their operational relevance. The performance of iXGB in generating rule sets is evaluated with experiments on real and benchmark datasets which demonstrated reasonable interpretability. The evaluation result also supports that the interpretability of XGBoost can be improved without using surrogate methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0012474000003636
- OA Status
- gold
- Cited By
- 1
- References
- 19
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392305522
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392305522Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0012474000003636Digital Object Identifier
- Title
-
iXGB: Improving the Interpretability of XGBoost Using Decision Rules and CounterfactualsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Mir Riyanul Islam, Mobyen Uddin Ahmed, Shahina BegumList of authors in order
- Landing page
-
https://doi.org/10.5220/0012474000003636Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5220/0012474000003636Direct OA link when available
- Concepts
-
Interpretability, Decision tree, Artificial intelligence, Computer science, Machine learning, Benchmark (surveying), Gradient boosting, Boosting (machine learning), Data mining, Counterfactual conditional, Tree (set theory), Set (abstract data type), Mathematics, Random forest, Counterfactual thinking, Epistemology, Philosophy, Mathematical analysis, Geography, Geodesy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
19Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392305522 |
|---|---|
| doi | https://doi.org/10.5220/0012474000003636 |
| ids.doi | https://doi.org/10.5220/0012474000003636 |
| ids.openalex | https://openalex.org/W4392305522 |
| fwci | 0.63877855 |
| type | article |
| title | iXGB: Improving the Interpretability of XGBoost Using Decision Rules and Counterfactuals |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1353 |
| biblio.first_page | 1345 |
| topics[0].id | https://openalex.org/T12026 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Explainable Artificial Intelligence (XAI) |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9905999898910522 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9833999872207642 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9794303178787231 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6849614381790161 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6538358926773071 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6452819108963013 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6068964600563049 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5642459392547607 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C70153297 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4898318946361542 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5591907 |
| concepts[6].display_name | Gradient boosting |
| concepts[7].id | https://openalex.org/C46686674 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48645421862602234 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[7].display_name | Boosting (machine learning) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4484288692474365 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C71889745 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4411030411720276 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1783264 |
| concepts[9].display_name | Counterfactual conditional |
| concepts[10].id | https://openalex.org/C113174947 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43115705251693726 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[10].display_name | Tree (set theory) |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42108842730522156 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2109246850013733 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C169258074 |
| concepts[13].level | 2 |
| concepts[13].score | 0.19333741068840027 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[13].display_name | Random forest |
| concepts[14].id | https://openalex.org/C108650721 |
| concepts[14].level | 2 |
| concepts[14].score | 0.13098430633544922 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1783253 |
| concepts[14].display_name | Counterfactual thinking |
| concepts[15].id | https://openalex.org/C111472728 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[15].display_name | Epistemology |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.9794303178787231 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/decision-tree |
| keywords[1].score | 0.6849614381790161 |
| keywords[1].display_name | Decision tree |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6538358926773071 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6452819108963013 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.6068964600563049 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5642459392547607 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/gradient-boosting |
| keywords[6].score | 0.4898318946361542 |
| keywords[6].display_name | Gradient boosting |
| keywords[7].id | https://openalex.org/keywords/boosting |
| keywords[7].score | 0.48645421862602234 |
| keywords[7].display_name | Boosting (machine learning) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.4484288692474365 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/counterfactual-conditional |
| keywords[9].score | 0.4411030411720276 |
| keywords[9].display_name | Counterfactual conditional |
| keywords[10].id | https://openalex.org/keywords/tree |
| keywords[10].score | 0.43115705251693726 |
| keywords[10].display_name | Tree (set theory) |
| keywords[11].id | https://openalex.org/keywords/set |
| keywords[11].score | 0.42108842730522156 |
| keywords[11].display_name | Set (abstract data type) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.2109246850013733 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/random-forest |
| keywords[13].score | 0.19333741068840027 |
| keywords[13].display_name | Random forest |
| keywords[14].id | https://openalex.org/keywords/counterfactual-thinking |
| keywords[14].score | 0.13098430633544922 |
| keywords[14].display_name | Counterfactual thinking |
| language | en |
| locations[0].id | doi:10.5220/0012474000003636 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 16th International Conference on Agents and Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.5220/0012474000003636 |
| locations[1].id | pmh:oai:DiVA.org:mdh-64916 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400013 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Publications (Konstfack University of Arts, Crafts, and Design) |
| locations[1].source.host_organization | https://openalex.org/I218177685 |
| locations[1].source.host_organization_name | University College of Arts Crafts and Design |
| locations[1].source.host_organization_lineage | https://openalex.org/I218177685 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference paper |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-64916 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5014229299 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0730-4405 |
| authorships[0].author.display_name | Mir Riyanul Islam |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82509713 |
| authorships[0].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| authorships[0].institutions[0].id | https://openalex.org/I82509713 |
| authorships[0].institutions[0].ror | https://ror.org/033vfbz75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82509713 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Mälardalen University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mir Riyanul Islam |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| authorships[1].author.id | https://openalex.org/A5007258873 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1953-6086 |
| authorships[1].author.display_name | Mobyen Uddin Ahmed |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82509713 |
| authorships[1].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| authorships[1].institutions[0].id | https://openalex.org/I82509713 |
| authorships[1].institutions[0].ror | https://ror.org/033vfbz75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82509713 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Mälardalen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mobyen Uddin Ahmed |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| authorships[2].author.id | https://openalex.org/A5036681394 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1212-7637 |
| authorships[2].author.display_name | Shahina Begum |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82509713 |
| authorships[2].affiliations[0].raw_affiliation_string | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| authorships[2].institutions[0].id | https://openalex.org/I82509713 |
| authorships[2].institutions[0].ror | https://ror.org/033vfbz75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82509713 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Mälardalen University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shahina Begum |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Artificial Intelligence and Intelligent Systems Research Group, School of Innovation Design and Engineering, Mälardalen University, Universitetsplan 1, 722 20 Västerås, Sweden, --- Select a Country --- |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5220/0012474000003636 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | iXGB: Improving the Interpretability of XGBoost Using Decision Rules and Counterfactuals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12026 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Explainable Artificial Intelligence (XAI) |
| related_works | https://openalex.org/W2967733078, https://openalex.org/W3204430031, https://openalex.org/W3137904399, https://openalex.org/W4310492845, https://openalex.org/W4293151273, https://openalex.org/W2885778889, https://openalex.org/W4310224730, https://openalex.org/W2766514146, https://openalex.org/W4289703016, https://openalex.org/W2885516856 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5220/0012474000003636 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 16th International Conference on Agents and Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.5220/0012474000003636 |
| primary_location.id | doi:10.5220/0012474000003636 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 16th International Conference on Agents and Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.5220/0012474000003636 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2029469881, https://openalex.org/W2295598076, https://openalex.org/W2101234009, https://openalex.org/W2994120362, https://openalex.org/W3176271731, https://openalex.org/W4283692816, https://openalex.org/W2788403449, https://openalex.org/W3150635270, https://openalex.org/W3169203486, https://openalex.org/W1678356000, https://openalex.org/W4392305522, https://openalex.org/W2441461845, https://openalex.org/W2011301426, https://openalex.org/W1481566577, https://openalex.org/W2949488362, https://openalex.org/W3167031513, https://openalex.org/W2954503794, https://openalex.org/W2315181538, https://openalex.org/W4210361514 |
| referenced_works_count | 19 |
| abstract_inverted_index.a | 66, 86 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.as | 3 |
| abstract_inverted_index.at | 28 |
| abstract_inverted_index.be | 140 |
| abstract_inverted_index.in | 112 |
| abstract_inverted_index.is | 43, 116 |
| abstract_inverted_index.of | 31, 41, 62, 68, 74, 79, 88, 93, 101, 110, 137 |
| abstract_inverted_index.on | 104, 120 |
| abstract_inverted_index.or | 38 |
| abstract_inverted_index.to | 19, 58, 97 |
| abstract_inverted_index.The | 108, 129 |
| abstract_inverted_index.and | 76, 122 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.can | 139 |
| abstract_inverted_index.not | 44 |
| abstract_inverted_index.set | 67, 87 |
| abstract_inverted_index.the | 29, 35, 47, 53, 60, 71, 77, 80, 91, 94, 99, 102, 135 |
| abstract_inverted_index.This | 23, 50 |
| abstract_inverted_index.also | 132 |
| abstract_inverted_index.cost | 30 |
| abstract_inverted_index.from | 70, 90 |
| abstract_inverted_index.have | 14 |
| abstract_inverted_index.iXGB | 64, 84, 111 |
| abstract_inverted_index.like | 46 |
| abstract_inverted_index.path | 37 |
| abstract_inverted_index.real | 121 |
| abstract_inverted_index.rule | 40, 114 |
| abstract_inverted_index.sets | 115 |
| abstract_inverted_index.such | 2 |
| abstract_inverted_index.test | 95 |
| abstract_inverted_index.that | 134 |
| abstract_inverted_index.with | 118 |
| abstract_inverted_index.Also, | 34 |
| abstract_inverted_index.comes | 27 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.paper | 51 |
| abstract_inverted_index.rules | 69 |
| abstract_inverted_index.their | 105 |
| abstract_inverted_index.using | 143 |
| abstract_inverted_index.which | 13, 125 |
| abstract_inverted_index.higher | 15, 24 |
| abstract_inverted_index.models | 12 |
| abstract_inverted_index.result | 131 |
| abstract_inverted_index.Extreme | 4 |
| abstract_inverted_index.Machine | 10 |
| abstract_inverted_index.XGBoost | 42, 75, 138 |
| abstract_inverted_index.improve | 59 |
| abstract_inverted_index.models, | 1 |
| abstract_inverted_index.models. | 22, 49 |
| abstract_inverted_index.reduced | 32 |
| abstract_inverted_index.support | 98 |
| abstract_inverted_index.without | 142 |
| abstract_inverted_index.Boosting | 6 |
| abstract_inverted_index.Gradient | 5 |
| abstract_inverted_index.Learning | 11 |
| abstract_inverted_index.XGBoost, | 55 |
| abstract_inverted_index.XGBoost. | 63 |
| abstract_inverted_index.accuracy | 17 |
| abstract_inverted_index.approach | 57 |
| abstract_inverted_index.compared | 18 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.decision | 36 |
| abstract_inverted_index.explicit | 45 |
| abstract_inverted_index.however, | 26 |
| abstract_inverted_index.improved | 141 |
| abstract_inverted_index.internal | 72 |
| abstract_inverted_index.methods. | 145 |
| abstract_inverted_index.proposes | 52 |
| abstract_inverted_index.renowned | 9 |
| abstract_inverted_index.supports | 133 |
| abstract_inverted_index.accuracy, | 25 |
| abstract_inverted_index.addition, | 83 |
| abstract_inverted_index.benchmark | 123 |
| abstract_inverted_index.end-users | 103 |
| abstract_inverted_index.evaluated | 117 |
| abstract_inverted_index.generates | 85 |
| abstract_inverted_index.instances | 96 |
| abstract_inverted_index.structure | 73 |
| abstract_inverted_index.surrogate | 144 |
| abstract_inverted_index.(XGBoost), | 7 |
| abstract_inverted_index.evaluation | 130 |
| abstract_inverted_index.generating | 113 |
| abstract_inverted_index.prediction | 16, 39 |
| abstract_inverted_index.reasonable | 127 |
| abstract_inverted_index.relevance. | 107 |
| abstract_inverted_index.tree-based | 21, 48 |
| abstract_inverted_index.experiments | 119 |
| abstract_inverted_index.operational | 106 |
| abstract_inverted_index.performance | 109 |
| abstract_inverted_index.traditional | 20 |
| abstract_inverted_index.approximates | 65 |
| abstract_inverted_index.demonstrated | 126 |
| abstract_inverted_index.Tree-ensemble | 0 |
| abstract_inverted_index.neighbourhood | 92 |
| abstract_inverted_index.understanding | 100 |
| abstract_inverted_index.characteristics | 78 |
| abstract_inverted_index.counterfactuals | 89 |
| abstract_inverted_index.interpretability | 61, 136 |
| abstract_inverted_index.interpretability. | 33, 128 |
| abstract_inverted_index.iXGB--interpretable | 54 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.65009812 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |