JOIG: Joint Optimization Model of Image Features and Constraint Geometry Fusion for Generalizable Gaussian Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3233/faia251221
Novel View Synthesis (NVS) seeks to generate realistic novel views from limited source images, offering an effective solution for 3D reconstruction in complex or unknown environments. Achieving high generalization under occlusion, varying illumination, and sparse observations remains challenging, largely hinging on the effective extraction, optimization, and fusion of image features and spatial geometry. In this work, we propose JOIG — a Joint Optimization Model of Image Features and Constraint Geometry Fusion for generalizable 3D Gaussian splatting. JOIG introduces three key components: Multiscale Dimension Rotation Fusion (MDRF) to capture intrinsic dependencies across feature dimensions for enhanced image encoding, Geometry Self-Correcting Aggregation (GSCA) to refine multi-view geometry with depth-guided reweighting, and Geometry-Image Feature Aggregation (GIFA) to achieve pixel-aligned fusion of spatial and image information. Extensive experiments on DTU, LLFF, NeRF Synthetic, and Tanks and Temples datasets demonstrate that JOIG achieves state-of-the-art generalization performance, significantly improving both quantitative metrics and visual fidelity in novel view synthesis.
Related Topics
- Type
- book-chapter
- Landing Page
- https://doi.org/10.3233/faia251221
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4415428071
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415428071Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia251221Digital Object Identifier
- Title
-
JOIG: Joint Optimization Model of Image Features and Constraint Geometry Fusion for Generalizable GaussianWork title
- Type
-
book-chapterOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Yang Shuo, Jianbo Zhang, Yongming Han, Liang YuanList of authors in order
- Landing page
-
https://doi.org/10.3233/faia251221Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3233/faia251221Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415428071 |
|---|---|
| doi | https://doi.org/10.3233/faia251221 |
| ids.doi | https://doi.org/10.3233/faia251221 |
| ids.openalex | https://openalex.org/W4415428071 |
| fwci | 0.0 |
| type | book-chapter |
| title | JOIG: Joint Optimization Model of Image Features and Constraint Geometry Fusion for Generalizable Gaussian |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9926999807357788 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9850000143051147 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10824 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9656999707221985 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Retrieval and Classification Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | doi:10.3233/faia251221 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia251221 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101116018 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yang Shuo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21642278 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Advanced Interdisciplinary Studies, Ningxia University |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I75390827 |
| authorships[0].affiliations[1].raw_affiliation_string | College of Information Science and Technology, Beijing University of Chemical Technology |
| authorships[0].institutions[0].id | https://openalex.org/I75390827 |
| authorships[0].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[0].institutions[1].id | https://openalex.org/I21642278 |
| authorships[0].institutions[1].ror | https://ror.org/04j7b2v61 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I21642278 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Ningxia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Shuo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Information Science and Technology, Beijing University of Chemical Technology, School of Advanced Interdisciplinary Studies, Ningxia University |
| authorships[1].author.id | https://openalex.org/A5007505433 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9066-709X |
| authorships[1].author.display_name | Jianbo Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[1].affiliations[0].raw_affiliation_string | The USC-SJTU Institute of Cultural and Creative Industry, Shanghai Jiaotong University |
| authorships[1].institutions[0].id | https://openalex.org/I183067930 |
| authorships[1].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang Jianbo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The USC-SJTU Institute of Cultural and Creative Industry, Shanghai Jiaotong University |
| authorships[2].author.id | https://openalex.org/A5087563094 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3209-725X |
| authorships[2].author.display_name | Yongming Han |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I75390827 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Information Science and Technology, Beijing University of Chemical Technology |
| authorships[2].institutions[0].id | https://openalex.org/I75390827 |
| authorships[2].institutions[0].ror | https://ror.org/00df5yc52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I75390827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Chemical Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Han Yongming |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Information Science and Technology, Beijing University of Chemical Technology |
| authorships[3].author.id | https://openalex.org/A5100390896 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7068-8766 |
| authorships[3].author.display_name | Liang Yuan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[3].affiliations[0].raw_affiliation_string | The USC-SJTU Institute of Cultural and Creative Industry, Shanghai Jiaotong University |
| authorships[3].institutions[0].id | https://openalex.org/I183067930 |
| authorships[3].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yuan Liang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The USC-SJTU Institute of Cultural and Creative Industry, Shanghai Jiaotong University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3233/faia251221 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | JOIG: Joint Optimization Model of Image Features and Constraint Geometry Fusion for Generalizable Gaussian |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9926999807357788 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/faia251221 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia251221 |
| primary_location.id | doi:10.3233/faia251221 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia251221 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60 |
| abstract_inverted_index.3D | 19, 73 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.in | 21, 149 |
| abstract_inverted_index.of | 47, 64, 117 |
| abstract_inverted_index.on | 40, 124 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 5, 86, 101, 113 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.and | 33, 45, 50, 67, 108, 119, 129, 131, 146 |
| abstract_inverted_index.for | 18, 71, 93 |
| abstract_inverted_index.key | 79 |
| abstract_inverted_index.the | 41 |
| abstract_inverted_index.— | 59 |
| abstract_inverted_index.DTU, | 125 |
| abstract_inverted_index.JOIG | 58, 76, 136 |
| abstract_inverted_index.NeRF | 127 |
| abstract_inverted_index.View | 1 |
| abstract_inverted_index.both | 143 |
| abstract_inverted_index.from | 10 |
| abstract_inverted_index.high | 27 |
| abstract_inverted_index.that | 135 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.view | 151 |
| abstract_inverted_index.with | 105 |
| abstract_inverted_index.(NVS) | 3 |
| abstract_inverted_index.Image | 65 |
| abstract_inverted_index.Joint | 61 |
| abstract_inverted_index.LLFF, | 126 |
| abstract_inverted_index.Model | 63 |
| abstract_inverted_index.Novel | 0 |
| abstract_inverted_index.Tanks | 130 |
| abstract_inverted_index.image | 48, 95, 120 |
| abstract_inverted_index.novel | 8, 150 |
| abstract_inverted_index.seeks | 4 |
| abstract_inverted_index.three | 78 |
| abstract_inverted_index.under | 29 |
| abstract_inverted_index.views | 9 |
| abstract_inverted_index.work, | 55 |
| abstract_inverted_index.(GIFA) | 112 |
| abstract_inverted_index.(GSCA) | 100 |
| abstract_inverted_index.(MDRF) | 85 |
| abstract_inverted_index.Fusion | 70, 84 |
| abstract_inverted_index.across | 90 |
| abstract_inverted_index.fusion | 46, 116 |
| abstract_inverted_index.refine | 102 |
| abstract_inverted_index.source | 12 |
| abstract_inverted_index.sparse | 34 |
| abstract_inverted_index.visual | 147 |
| abstract_inverted_index.Feature | 110 |
| abstract_inverted_index.Temples | 132 |
| abstract_inverted_index.achieve | 114 |
| abstract_inverted_index.capture | 87 |
| abstract_inverted_index.complex | 22 |
| abstract_inverted_index.feature | 91 |
| abstract_inverted_index.hinging | 39 |
| abstract_inverted_index.images, | 13 |
| abstract_inverted_index.largely | 38 |
| abstract_inverted_index.limited | 11 |
| abstract_inverted_index.metrics | 145 |
| abstract_inverted_index.propose | 57 |
| abstract_inverted_index.remains | 36 |
| abstract_inverted_index.spatial | 51, 118 |
| abstract_inverted_index.unknown | 24 |
| abstract_inverted_index.varying | 31 |
| abstract_inverted_index.Features | 66 |
| abstract_inverted_index.Gaussian | 74 |
| abstract_inverted_index.Geometry | 69, 97 |
| abstract_inverted_index.Rotation | 83 |
| abstract_inverted_index.achieves | 137 |
| abstract_inverted_index.datasets | 133 |
| abstract_inverted_index.enhanced | 94 |
| abstract_inverted_index.features | 49 |
| abstract_inverted_index.fidelity | 148 |
| abstract_inverted_index.generate | 6 |
| abstract_inverted_index.geometry | 104 |
| abstract_inverted_index.offering | 14 |
| abstract_inverted_index.solution | 17 |
| abstract_inverted_index.Achieving | 26 |
| abstract_inverted_index.Dimension | 82 |
| abstract_inverted_index.Extensive | 122 |
| abstract_inverted_index.Synthesis | 2 |
| abstract_inverted_index.effective | 16, 42 |
| abstract_inverted_index.encoding, | 96 |
| abstract_inverted_index.geometry. | 52 |
| abstract_inverted_index.improving | 142 |
| abstract_inverted_index.intrinsic | 88 |
| abstract_inverted_index.realistic | 7 |
| abstract_inverted_index.Constraint | 68 |
| abstract_inverted_index.Multiscale | 81 |
| abstract_inverted_index.Synthetic, | 128 |
| abstract_inverted_index.dimensions | 92 |
| abstract_inverted_index.introduces | 77 |
| abstract_inverted_index.multi-view | 103 |
| abstract_inverted_index.occlusion, | 30 |
| abstract_inverted_index.splatting. | 75 |
| abstract_inverted_index.synthesis. | 152 |
| abstract_inverted_index.Aggregation | 99, 111 |
| abstract_inverted_index.components: | 80 |
| abstract_inverted_index.demonstrate | 134 |
| abstract_inverted_index.experiments | 123 |
| abstract_inverted_index.extraction, | 43 |
| abstract_inverted_index.Optimization | 62 |
| abstract_inverted_index.challenging, | 37 |
| abstract_inverted_index.dependencies | 89 |
| abstract_inverted_index.depth-guided | 106 |
| abstract_inverted_index.information. | 121 |
| abstract_inverted_index.observations | 35 |
| abstract_inverted_index.performance, | 140 |
| abstract_inverted_index.quantitative | 144 |
| abstract_inverted_index.reweighting, | 107 |
| abstract_inverted_index.environments. | 25 |
| abstract_inverted_index.generalizable | 72 |
| abstract_inverted_index.illumination, | 32 |
| abstract_inverted_index.optimization, | 44 |
| abstract_inverted_index.pixel-aligned | 115 |
| abstract_inverted_index.significantly | 141 |
| abstract_inverted_index.Geometry-Image | 109 |
| abstract_inverted_index.generalization | 28, 139 |
| abstract_inverted_index.reconstruction | 20 |
| abstract_inverted_index.Self-Correcting | 98 |
| abstract_inverted_index.state-of-the-art | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.84702303 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |