Joint disease mapping for bivariate count data with residual correlation due to unknown number of common cases Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/biomtc/ujaf119
The joint spatial distribution of two count outcomes (eg, counts of two diseases) is usually studied using a Poisson shared component model (P-SCM), which uses geographically structured latent variables to model spatial variations that are specific and shared by both outcomes. In this model, the correlation between the outcomes is assumed to be fully accounted for by the latent variables. However, in this article, we show that when the outcomes have an unknown number of cases in common, the bivariate counts exhibit a positive “residual” correlation, which the P-SCM wrongly attributes to the covariance of the latent variables, leading to biased inference and degraded predictive performance. Accordingly, we propose a new SCM based on the Bivariate-Poisson distribution (BP-SCM hereafter) to study such correlated bivariate data. The BP-SCM decomposes each count into counts of common and distinct cases, and then models each of these three counts (two distinct and one common) using Gaussian Markov Random Fields. The model is formulated in a Bayesian framework using Hamiltonian Monte Carlo inference. Simulations and a real-world application showed the good inferential and predictive performances of the BP-SCM and confirm the bias in P-SCM. BP-SCM provides rich epidemiological information, such as the mean levels of the unknown counts of common and distinct cases, and their shared and specific spatial variations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/biomtc/ujaf119
- OA Status
- green
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413889532
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413889532Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/biomtc/ujaf119Digital Object Identifier
- Title
-
Joint disease mapping for bivariate count data with residual correlation due to unknown number of common casesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-03Full publication date if available
- Authors
-
Édouard Chatignoux, Zoé Uhry, Laurent Remontet, Isabelle AlbertList of authors in order
- Landing page
-
https://doi.org/10.1093/biomtc/ujaf119Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.inrae.fr/hal-05233948Direct OA link when available
- Concepts
-
Bivariate analysis, Statistics, Mathematics, Joint probability distribution, Poisson distribution, Count data, Correlation, Latent variable, Markov chain Monte Carlo, Covariance, Multivariate normal distribution, Bayesian inference, Random effects model, Residual, Inference, Bayesian probability, Econometrics, Multivariate statistics, Computer science, Artificial intelligence, Algorithm, Medicine, Internal medicine, Geometry, Meta-analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413889532 |
|---|---|
| doi | https://doi.org/10.1093/biomtc/ujaf119 |
| ids.doi | https://doi.org/10.1093/biomtc/ujaf119 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40888818 |
| ids.openalex | https://openalex.org/W4413889532 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003198 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Computer Simulation |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015233 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Models, Statistical |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D001499 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Bayes Theorem |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009010 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Monte Carlo Method |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016012 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Poisson Distribution |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008390 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Markov Chains |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D001699 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Biometry |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D003627 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Data Interpretation, Statistical |
| type | article |
| title | Joint disease mapping for bivariate count data with residual correlation due to unknown number of common cases |
| biblio.issue | 3 |
| biblio.volume | 81 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11819 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Data-Driven Disease Surveillance |
| topics[1].id | https://openalex.org/T11911 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9959999918937683 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Spatial and Panel Data Analysis |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9921000003814697 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list.value | 3710 |
| apc_list.currency | USD |
| apc_list.value_usd | 3710 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64341305 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8315820097923279 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4919225 |
| concepts[0].display_name | Bivariate analysis |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6957061886787415 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6014072299003601 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C18653775 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5889006853103638 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[3].display_name | Joint probability distribution |
| concepts[4].id | https://openalex.org/C100906024 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5788176655769348 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[4].display_name | Poisson distribution |
| concepts[5].id | https://openalex.org/C33643355 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5771763324737549 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[5].display_name | Count data |
| concepts[6].id | https://openalex.org/C117220453 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5103790163993835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[6].display_name | Correlation |
| concepts[7].id | https://openalex.org/C51167844 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5060421824455261 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[7].display_name | Latent variable |
| concepts[8].id | https://openalex.org/C111350023 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5026683807373047 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[8].display_name | Markov chain Monte Carlo |
| concepts[9].id | https://openalex.org/C178650346 |
| concepts[9].level | 2 |
| concepts[9].score | 0.49941396713256836 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q201984 |
| concepts[9].display_name | Covariance |
| concepts[10].id | https://openalex.org/C177384507 |
| concepts[10].level | 3 |
| concepts[10].score | 0.477582722902298 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1149000 |
| concepts[10].display_name | Multivariate normal distribution |
| concepts[11].id | https://openalex.org/C160234255 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4726877510547638 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[11].display_name | Bayesian inference |
| concepts[12].id | https://openalex.org/C168743327 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4680233895778656 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1826427 |
| concepts[12].display_name | Random effects model |
| concepts[13].id | https://openalex.org/C155512373 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4672192335128784 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[13].display_name | Residual |
| concepts[14].id | https://openalex.org/C2776214188 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4636038541793823 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[14].display_name | Inference |
| concepts[15].id | https://openalex.org/C107673813 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4479779005050659 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[15].display_name | Bayesian probability |
| concepts[16].id | https://openalex.org/C149782125 |
| concepts[16].level | 1 |
| concepts[16].score | 0.3732020854949951 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[16].display_name | Econometrics |
| concepts[17].id | https://openalex.org/C161584116 |
| concepts[17].level | 2 |
| concepts[17].score | 0.3013949990272522 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[17].display_name | Multivariate statistics |
| concepts[18].id | https://openalex.org/C41008148 |
| concepts[18].level | 0 |
| concepts[18].score | 0.28211700916290283 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[18].display_name | Computer science |
| concepts[19].id | https://openalex.org/C154945302 |
| concepts[19].level | 1 |
| concepts[19].score | 0.15463528037071228 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[19].display_name | Artificial intelligence |
| concepts[20].id | https://openalex.org/C11413529 |
| concepts[20].level | 1 |
| concepts[20].score | 0.12461024522781372 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[20].display_name | Algorithm |
| concepts[21].id | https://openalex.org/C71924100 |
| concepts[21].level | 0 |
| concepts[21].score | 0.1245475709438324 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[21].display_name | Medicine |
| concepts[22].id | https://openalex.org/C126322002 |
| concepts[22].level | 1 |
| concepts[22].score | 0.08292189240455627 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[22].display_name | Internal medicine |
| concepts[23].id | https://openalex.org/C2524010 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[23].display_name | Geometry |
| concepts[24].id | https://openalex.org/C95190672 |
| concepts[24].level | 2 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q815382 |
| concepts[24].display_name | Meta-analysis |
| keywords[0].id | https://openalex.org/keywords/bivariate-analysis |
| keywords[0].score | 0.8315820097923279 |
| keywords[0].display_name | Bivariate analysis |
| keywords[1].id | https://openalex.org/keywords/statistics |
| keywords[1].score | 0.6957061886787415 |
| keywords[1].display_name | Statistics |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.6014072299003601 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/joint-probability-distribution |
| keywords[3].score | 0.5889006853103638 |
| keywords[3].display_name | Joint probability distribution |
| keywords[4].id | https://openalex.org/keywords/poisson-distribution |
| keywords[4].score | 0.5788176655769348 |
| keywords[4].display_name | Poisson distribution |
| keywords[5].id | https://openalex.org/keywords/count-data |
| keywords[5].score | 0.5771763324737549 |
| keywords[5].display_name | Count data |
| keywords[6].id | https://openalex.org/keywords/correlation |
| keywords[6].score | 0.5103790163993835 |
| keywords[6].display_name | Correlation |
| keywords[7].id | https://openalex.org/keywords/latent-variable |
| keywords[7].score | 0.5060421824455261 |
| keywords[7].display_name | Latent variable |
| keywords[8].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[8].score | 0.5026683807373047 |
| keywords[8].display_name | Markov chain Monte Carlo |
| keywords[9].id | https://openalex.org/keywords/covariance |
| keywords[9].score | 0.49941396713256836 |
| keywords[9].display_name | Covariance |
| keywords[10].id | https://openalex.org/keywords/multivariate-normal-distribution |
| keywords[10].score | 0.477582722902298 |
| keywords[10].display_name | Multivariate normal distribution |
| keywords[11].id | https://openalex.org/keywords/bayesian-inference |
| keywords[11].score | 0.4726877510547638 |
| keywords[11].display_name | Bayesian inference |
| keywords[12].id | https://openalex.org/keywords/random-effects-model |
| keywords[12].score | 0.4680233895778656 |
| keywords[12].display_name | Random effects model |
| keywords[13].id | https://openalex.org/keywords/residual |
| keywords[13].score | 0.4672192335128784 |
| keywords[13].display_name | Residual |
| keywords[14].id | https://openalex.org/keywords/inference |
| keywords[14].score | 0.4636038541793823 |
| keywords[14].display_name | Inference |
| keywords[15].id | https://openalex.org/keywords/bayesian-probability |
| keywords[15].score | 0.4479779005050659 |
| keywords[15].display_name | Bayesian probability |
| keywords[16].id | https://openalex.org/keywords/econometrics |
| keywords[16].score | 0.3732020854949951 |
| keywords[16].display_name | Econometrics |
| keywords[17].id | https://openalex.org/keywords/multivariate-statistics |
| keywords[17].score | 0.3013949990272522 |
| keywords[17].display_name | Multivariate statistics |
| keywords[18].id | https://openalex.org/keywords/computer-science |
| keywords[18].score | 0.28211700916290283 |
| keywords[18].display_name | Computer science |
| keywords[19].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[19].score | 0.15463528037071228 |
| keywords[19].display_name | Artificial intelligence |
| keywords[20].id | https://openalex.org/keywords/algorithm |
| keywords[20].score | 0.12461024522781372 |
| keywords[20].display_name | Algorithm |
| keywords[21].id | https://openalex.org/keywords/medicine |
| keywords[21].score | 0.1245475709438324 |
| keywords[21].display_name | Medicine |
| keywords[22].id | https://openalex.org/keywords/internal-medicine |
| keywords[22].score | 0.08292189240455627 |
| keywords[22].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1093/biomtc/ujaf119 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S8265502 |
| locations[0].source.issn | 0006-341X, 1541-0420 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0006-341X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Biometrics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biometrics |
| locations[0].landing_page_url | https://doi.org/10.1093/biomtc/ujaf119 |
| locations[1].id | pmid:40888818 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Biometrics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40888818 |
| locations[2].id | pmh:oai:HAL:hal-05233948v1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402512 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[2].source.host_organization | https://openalex.org/I1294671590 |
| locations[2].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[2].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Journal articles |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Biometrics, 2025, 81 (3), 13 p. ⟨10.1093/biomtc/ujaf119⟩ |
| locations[2].landing_page_url | https://hal.inrae.fr/hal-05233948 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5031989790 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9988-1108 |
| authorships[0].author.display_name | Édouard Chatignoux |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210092716, https://openalex.org/I4210145195 |
| authorships[0].affiliations[0].raw_affiliation_string | Sante publique France , Saint-Maurice 94415 , |
| authorships[0].institutions[0].id | https://openalex.org/I4210145195 |
| authorships[0].institutions[0].ror | https://ror.org/04wbsq162 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I154526488, https://openalex.org/I4210145195 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Institut thématique Santé Publique |
| authorships[0].institutions[1].id | https://openalex.org/I4210092716 |
| authorships[0].institutions[1].ror | https://ror.org/00dfw9p58 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210092716 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Santé Publique France |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Edouard Chatignoux |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sante publique France , Saint-Maurice 94415 , |
| authorships[1].author.id | https://openalex.org/A5004311559 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9993-7121 |
| authorships[1].author.display_name | Zoé Uhry |
| authorships[1].countries | FR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210100596 |
| authorships[1].affiliations[0].raw_affiliation_string | Hospices Civils de Lyon Department of Biostatistics and Bioinformatics, , Pierre-Bénite 69495 , |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210092716, https://openalex.org/I4210145195 |
| authorships[1].affiliations[1].raw_affiliation_string | Sante publique France , Saint-Maurice 94415 , |
| authorships[1].institutions[0].id | https://openalex.org/I4210100596 |
| authorships[1].institutions[0].ror | https://ror.org/01502ca60 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210100596 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Hospices Civils de Lyon |
| authorships[1].institutions[1].id | https://openalex.org/I4210145195 |
| authorships[1].institutions[1].ror | https://ror.org/04wbsq162 |
| authorships[1].institutions[1].type | government |
| authorships[1].institutions[1].lineage | https://openalex.org/I154526488, https://openalex.org/I4210145195 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Institut thématique Santé Publique |
| authorships[1].institutions[2].id | https://openalex.org/I4210092716 |
| authorships[1].institutions[2].ror | https://ror.org/00dfw9p58 |
| authorships[1].institutions[2].type | other |
| authorships[1].institutions[2].lineage | https://openalex.org/I4210092716 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Santé Publique France |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zoé Uhry |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hospices Civils de Lyon Department of Biostatistics and Bioinformatics, , Pierre-Bénite 69495 ,, Sante publique France , Saint-Maurice 94415 , |
| authorships[2].author.id | https://openalex.org/A5047805728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3393-4216 |
| authorships[2].author.display_name | Laurent Remontet |
| authorships[2].countries | FR, US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I100532134, https://openalex.org/I1294671590, https://openalex.org/I178906410, https://openalex.org/I4210135640 |
| authorships[2].affiliations[0].raw_affiliation_string | UMR 5558, LBBE, Biostatistics Health Group, CNRS, University Lyon 1 , Villeurbanne 69100 , |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210100596 |
| authorships[2].affiliations[1].raw_affiliation_string | Hospices Civils de Lyon Department of Biostatistics and Bioinformatics, , Pierre-Bénite 69495 , |
| authorships[2].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[2].institutions[1].id | https://openalex.org/I4210100596 |
| authorships[2].institutions[1].ror | https://ror.org/01502ca60 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210100596 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Hospices Civils de Lyon |
| authorships[2].institutions[2].id | https://openalex.org/I4210135640 |
| authorships[2].institutions[2].ror | https://ror.org/03skt0t88 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I100532134, https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I203339264, https://openalex.org/I4210100596, https://openalex.org/I4210107625, https://openalex.org/I4210135640 |
| authorships[2].institutions[2].country_code | FR |
| authorships[2].institutions[2].display_name | Laboratoire de Biométrie et Biologie Evolutive |
| authorships[2].institutions[3].id | https://openalex.org/I100532134 |
| authorships[2].institutions[3].ror | https://ror.org/029brtt94 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I100532134, https://openalex.org/I203339264 |
| authorships[2].institutions[3].country_code | FR |
| authorships[2].institutions[3].display_name | Université Claude Bernard Lyon 1 |
| authorships[2].institutions[4].id | https://openalex.org/I178906410 |
| authorships[2].institutions[4].ror | https://ror.org/03c4kec23 |
| authorships[2].institutions[4].type | education |
| authorships[2].institutions[4].lineage | https://openalex.org/I178906410 |
| authorships[2].institutions[4].country_code | US |
| authorships[2].institutions[4].display_name | Lyon College |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Laurent Remontet |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hospices Civils de Lyon Department of Biostatistics and Bioinformatics, , Pierre-Bénite 69495 ,, UMR 5558, LBBE, Biostatistics Health Group, CNRS, University Lyon 1 , Villeurbanne 69100 , |
| authorships[3].author.id | https://openalex.org/A5089892976 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2686-917X |
| authorships[3].author.display_name | Isabelle Albert |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I22248866, https://openalex.org/I277688954, https://openalex.org/I4210088668 |
| authorships[3].affiliations[0].raw_affiliation_string | UMR MIA Paris-Saclay, Université Paris-Saclay, AgroParisTech, INRAE , Palaiseau 91120 , |
| authorships[3].institutions[0].id | https://openalex.org/I22248866 |
| authorships[3].institutions[0].ror | https://ror.org/02kbmgc12 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I22248866, https://openalex.org/I277688954 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | AgroParisTech |
| authorships[3].institutions[1].id | https://openalex.org/I4210088668 |
| authorships[3].institutions[1].ror | https://ror.org/003vg9w96 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210088668 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement |
| authorships[3].institutions[2].id | https://openalex.org/I277688954 |
| authorships[3].institutions[2].ror | https://ror.org/03xjwb503 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I277688954 |
| authorships[3].institutions[2].country_code | FR |
| authorships[3].institutions[2].display_name | Université Paris-Saclay |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Isabelle Albert |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | UMR MIA Paris-Saclay, Université Paris-Saclay, AgroParisTech, INRAE , Palaiseau 91120 , |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.inrae.fr/hal-05233948 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Joint disease mapping for bivariate count data with residual correlation due to unknown number of common cases |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11819 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Data-Driven Disease Surveillance |
| related_works | https://openalex.org/W4390572448, https://openalex.org/W2148216078, https://openalex.org/W2553486759, https://openalex.org/W2007022891, https://openalex.org/W846888813, https://openalex.org/W3094338031, https://openalex.org/W1822000462, https://openalex.org/W3027660702, https://openalex.org/W2065022436, https://openalex.org/W2382619973 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:HAL:hal-05233948v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Journal articles |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Biometrics, 2025, 81 (3), 13 p. ⟨10.1093/biomtc/ujaf119⟩ |
| best_oa_location.landing_page_url | https://hal.inrae.fr/hal-05233948 |
| primary_location.id | doi:10.1093/biomtc/ujaf119 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S8265502 |
| primary_location.source.issn | 0006-341X, 1541-0420 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0006-341X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Biometrics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biometrics |
| primary_location.landing_page_url | https://doi.org/10.1093/biomtc/ujaf119 |
| publication_date | 2025-07-03 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1917581155, https://openalex.org/W2130890777, https://openalex.org/W2807052726, https://openalex.org/W2036571820, https://openalex.org/W4206098783, https://openalex.org/W1985905165, https://openalex.org/W2027254536, https://openalex.org/W2962919278, https://openalex.org/W3124939451, https://openalex.org/W4206512956, https://openalex.org/W2016346937, https://openalex.org/W2968490943, https://openalex.org/W2343968360, https://openalex.org/W1992340030, https://openalex.org/W1972625678, https://openalex.org/W2920804790, https://openalex.org/W2145514150 |
| referenced_works_count | 17 |
| abstract_inverted_index.a | 18, 83, 110, 161, 171 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.an | 72 |
| abstract_inverted_index.as | 196 |
| abstract_inverted_index.be | 53 |
| abstract_inverted_index.by | 39, 57 |
| abstract_inverted_index.in | 62, 77, 160, 188 |
| abstract_inverted_index.is | 14, 50, 158 |
| abstract_inverted_index.of | 5, 11, 75, 95, 133, 142, 181, 200, 204 |
| abstract_inverted_index.on | 114 |
| abstract_inverted_index.to | 30, 52, 92, 100, 120 |
| abstract_inverted_index.we | 65, 108 |
| abstract_inverted_index.SCM | 112 |
| abstract_inverted_index.The | 1, 126, 156 |
| abstract_inverted_index.and | 37, 103, 135, 138, 148, 170, 178, 184, 206, 209, 212 |
| abstract_inverted_index.are | 35 |
| abstract_inverted_index.for | 56 |
| abstract_inverted_index.new | 111 |
| abstract_inverted_index.one | 149 |
| abstract_inverted_index.the | 45, 48, 58, 69, 79, 88, 93, 96, 115, 175, 182, 186, 197, 201 |
| abstract_inverted_index.two | 6, 12 |
| abstract_inverted_index.(eg, | 9 |
| abstract_inverted_index.(two | 146 |
| abstract_inverted_index.bias | 187 |
| abstract_inverted_index.both | 40 |
| abstract_inverted_index.each | 129, 141 |
| abstract_inverted_index.good | 176 |
| abstract_inverted_index.have | 71 |
| abstract_inverted_index.into | 131 |
| abstract_inverted_index.mean | 198 |
| abstract_inverted_index.rich | 192 |
| abstract_inverted_index.show | 66 |
| abstract_inverted_index.such | 122, 195 |
| abstract_inverted_index.that | 34, 67 |
| abstract_inverted_index.then | 139 |
| abstract_inverted_index.this | 43, 63 |
| abstract_inverted_index.uses | 25 |
| abstract_inverted_index.when | 68 |
| abstract_inverted_index.Carlo | 167 |
| abstract_inverted_index.Monte | 166 |
| abstract_inverted_index.P-SCM | 89 |
| abstract_inverted_index.based | 113 |
| abstract_inverted_index.cases | 76 |
| abstract_inverted_index.count | 7, 130 |
| abstract_inverted_index.data. | 125 |
| abstract_inverted_index.fully | 54 |
| abstract_inverted_index.joint | 2 |
| abstract_inverted_index.model | 22, 31, 157 |
| abstract_inverted_index.study | 121 |
| abstract_inverted_index.their | 210 |
| abstract_inverted_index.these | 143 |
| abstract_inverted_index.three | 144 |
| abstract_inverted_index.using | 17, 151, 164 |
| abstract_inverted_index.which | 24, 87 |
| abstract_inverted_index.BP-SCM | 127, 183, 190 |
| abstract_inverted_index.Markov | 153 |
| abstract_inverted_index.P-SCM. | 189 |
| abstract_inverted_index.Random | 154 |
| abstract_inverted_index.biased | 101 |
| abstract_inverted_index.cases, | 137, 208 |
| abstract_inverted_index.common | 134, 205 |
| abstract_inverted_index.counts | 10, 81, 132, 145, 203 |
| abstract_inverted_index.latent | 28, 59, 97 |
| abstract_inverted_index.levels | 199 |
| abstract_inverted_index.model, | 44 |
| abstract_inverted_index.models | 140 |
| abstract_inverted_index.number | 74 |
| abstract_inverted_index.shared | 20, 38, 211 |
| abstract_inverted_index.showed | 174 |
| abstract_inverted_index.(BP-SCM | 118 |
| abstract_inverted_index.Fields. | 155 |
| abstract_inverted_index.Poisson | 19 |
| abstract_inverted_index.assumed | 51 |
| abstract_inverted_index.between | 47 |
| abstract_inverted_index.common) | 150 |
| abstract_inverted_index.common, | 78 |
| abstract_inverted_index.confirm | 185 |
| abstract_inverted_index.exhibit | 82 |
| abstract_inverted_index.leading | 99 |
| abstract_inverted_index.propose | 109 |
| abstract_inverted_index.spatial | 3, 32, 214 |
| abstract_inverted_index.studied | 16 |
| abstract_inverted_index.unknown | 73, 202 |
| abstract_inverted_index.usually | 15 |
| abstract_inverted_index.wrongly | 90 |
| abstract_inverted_index.(P-SCM), | 23 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Bayesian | 162 |
| abstract_inverted_index.Gaussian | 152 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.article, | 64 |
| abstract_inverted_index.degraded | 104 |
| abstract_inverted_index.distinct | 136, 147, 207 |
| abstract_inverted_index.outcomes | 8, 49, 70 |
| abstract_inverted_index.positive | 84 |
| abstract_inverted_index.provides | 191 |
| abstract_inverted_index.specific | 36, 213 |
| abstract_inverted_index.accounted | 55 |
| abstract_inverted_index.bivariate | 80, 124 |
| abstract_inverted_index.component | 21 |
| abstract_inverted_index.diseases) | 13 |
| abstract_inverted_index.framework | 163 |
| abstract_inverted_index.inference | 102 |
| abstract_inverted_index.outcomes. | 41 |
| abstract_inverted_index.variables | 29 |
| abstract_inverted_index.attributes | 91 |
| abstract_inverted_index.correlated | 123 |
| abstract_inverted_index.covariance | 94 |
| abstract_inverted_index.decomposes | 128 |
| abstract_inverted_index.formulated | 159 |
| abstract_inverted_index.hereafter) | 119 |
| abstract_inverted_index.inference. | 168 |
| abstract_inverted_index.predictive | 105, 179 |
| abstract_inverted_index.real-world | 172 |
| abstract_inverted_index.structured | 27 |
| abstract_inverted_index.variables, | 98 |
| abstract_inverted_index.variables. | 60 |
| abstract_inverted_index.variations | 33 |
| abstract_inverted_index.Hamiltonian | 165 |
| abstract_inverted_index.Simulations | 169 |
| abstract_inverted_index.application | 173 |
| abstract_inverted_index.correlation | 46 |
| abstract_inverted_index.inferential | 177 |
| abstract_inverted_index.variations. | 215 |
| abstract_inverted_index.Accordingly, | 107 |
| abstract_inverted_index.correlation, | 86 |
| abstract_inverted_index.distribution | 4, 117 |
| abstract_inverted_index.information, | 194 |
| abstract_inverted_index.performance. | 106 |
| abstract_inverted_index.performances | 180 |
| abstract_inverted_index.geographically | 26 |
| abstract_inverted_index.“residual” | 85 |
| abstract_inverted_index.epidemiological | 193 |
| abstract_inverted_index.Bivariate-Poisson | 116 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.4923709 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |