Joint Explicit and Implicit Cross-Modal Interaction Network for Anterior Chamber Inflammation Diagnosis Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.06171
Uveitis demands the precise diagnosis of anterior chamber inflammation (ACI) for optimal treatment. However, current diagnostic methods only rely on a limited single-modal disease perspective, which leads to poor performance. In this paper, we investigate a promising yet challenging way to fuse multimodal data for ACI diagnosis. Notably, existing fusion paradigms focus on empowering implicit modality interactions (i.e., self-attention and its variants), but neglect to inject explicit modality interactions, especially from clinical knowledge and imaging property. To this end, we propose a jointly Explicit and implicit Cross-Modal Interaction Network (EiCI-Net) for Anterior Chamber Inflammation Diagnosis that uses anterior segment optical coherence tomography (AS-OCT) images, slit-lamp images, and clinical data jointly. Specifically, we first develop CNN-Based Encoders and Tabular Processing Module (TPM) to extract efficient feature representations in different modalities. Then, we devise an Explicit Cross-Modal Interaction Module (ECIM) to generate attention maps as a kind of explicit clinical knowledge based on the tabular feature maps, then integrated them into the slit-lamp feature maps, allowing the CNN-Based Encoder to focus on more effective informativeness of the slit-lamp images. After that, the Implicit Cross-Modal Interaction Module (ICIM), a transformer-based network, further implicitly enhances modality interactions. Finally, we construct a considerable real-world dataset from our collaborative hospital and conduct sufficient experiments to demonstrate the superior performance of our proposed EiCI-Net compared with the state-of-the-art classification methods in various metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.06171
- https://arxiv.org/pdf/2312.06171
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389708836
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389708836Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.06171Digital Object Identifier
- Title
-
Joint Explicit and Implicit Cross-Modal Interaction Network for Anterior Chamber Inflammation DiagnosisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-11Full publication date if available
- Authors
-
Qian Shao, Ye Dai, Haochao Ying, Kan Xu, Jinhong Wang, Wei Chi, Jian WuList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.06171Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.06171Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.06171Direct OA link when available
- Concepts
-
Computer science, Modal, Modality (human–computer interaction), Feature (linguistics), Focus (optics), Artificial intelligence, Encoder, Pattern recognition (psychology), Chemistry, Philosophy, Polymer chemistry, Optics, Operating system, Linguistics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389708836 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.06171 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.06171 |
| ids.openalex | https://openalex.org/W4389708836 |
| fwci | |
| type | preprint |
| title | Joint Explicit and Implicit Cross-Modal Interaction Network for Anterior Chamber Inflammation Diagnosis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11194 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2731 |
| topics[0].subfield.display_name | Ophthalmology |
| topics[0].display_name | Ocular Diseases and Behçet’s Syndrome |
| topics[1].id | https://openalex.org/T10308 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9965999722480774 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2745 |
| topics[1].subfield.display_name | Rheumatology |
| topics[1].display_name | Systemic Lupus Erythematosus Research |
| topics[2].id | https://openalex.org/T11438 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.983299970626831 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Retinal Imaging and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7054795622825623 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C71139939 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6420590877532959 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[1].display_name | Modal |
| concepts[2].id | https://openalex.org/C2780226545 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5643543004989624 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6888030 |
| concepts[2].display_name | Modality (human–computer interaction) |
| concepts[3].id | https://openalex.org/C2776401178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5414988398551941 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[3].display_name | Feature (linguistics) |
| concepts[4].id | https://openalex.org/C192209626 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5373600721359253 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[4].display_name | Focus (optics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5330117344856262 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C118505674 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47261691093444824 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[6].display_name | Encoder |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3749518394470215 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C138885662 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[9].display_name | Philosophy |
| concepts[10].id | https://openalex.org/C188027245 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[10].display_name | Polymer chemistry |
| concepts[11].id | https://openalex.org/C120665830 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[11].display_name | Optics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7054795622825623 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/modal |
| keywords[1].score | 0.6420590877532959 |
| keywords[1].display_name | Modal |
| keywords[2].id | https://openalex.org/keywords/modality |
| keywords[2].score | 0.5643543004989624 |
| keywords[2].display_name | Modality (human–computer interaction) |
| keywords[3].id | https://openalex.org/keywords/feature |
| keywords[3].score | 0.5414988398551941 |
| keywords[3].display_name | Feature (linguistics) |
| keywords[4].id | https://openalex.org/keywords/focus |
| keywords[4].score | 0.5373600721359253 |
| keywords[4].display_name | Focus (optics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5330117344856262 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/encoder |
| keywords[6].score | 0.47261691093444824 |
| keywords[6].display_name | Encoder |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3749518394470215 |
| keywords[7].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.06171 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.06171 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.06171 |
| locations[1].id | doi:10.48550/arxiv.2312.06171 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.06171 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100559772 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1002-380X |
| authorships[0].author.display_name | Qian Shao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shao, Qian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044029236 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9661-4626 |
| authorships[1].author.display_name | Ye Dai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dai, Ye |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5007571956 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7832-2518 |
| authorships[2].author.display_name | Haochao Ying |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying, Haochao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100737914 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6954-2578 |
| authorships[3].author.display_name | Kan Xu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xu, Kan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100775332 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0012-7218 |
| authorships[4].author.display_name | Jinhong Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Jinhong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101526837 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6110-4802 |
| authorships[5].author.display_name | Wei Chi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chi, Wei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100452254 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2333-1000 |
| authorships[6].author.display_name | Jian Wu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Wu, Jian |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.06171 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-12-14T00:00:00 |
| display_name | Joint Explicit and Implicit Cross-Modal Interaction Network for Anterior Chamber Inflammation Diagnosis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11194 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2731 |
| primary_topic.subfield.display_name | Ophthalmology |
| primary_topic.display_name | Ocular Diseases and Behçet’s Syndrome |
| related_works | https://openalex.org/W2385859805, https://openalex.org/W2530972254, https://openalex.org/W4390516098, https://openalex.org/W2374013449, https://openalex.org/W2181948922, https://openalex.org/W73545470, https://openalex.org/W2384362569, https://openalex.org/W2142795561, https://openalex.org/W2364381299, https://openalex.org/W627697492 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.06171 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.06171 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.06171 |
| primary_location.id | pmh:oai:arXiv.org:2312.06171 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.06171 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.06171 |
| publication_date | 2023-12-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 35, 81, 143, 185, 196 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 142 |
| abstract_inverted_index.in | 126, 223 |
| abstract_inverted_index.of | 5, 145, 173, 213 |
| abstract_inverted_index.on | 19, 52, 150, 169 |
| abstract_inverted_index.to | 27, 40, 64, 121, 138, 167, 208 |
| abstract_inverted_index.we | 33, 79, 111, 130, 194 |
| abstract_inverted_index.ACI | 45 |
| abstract_inverted_index.and | 59, 73, 84, 106, 116, 204 |
| abstract_inverted_index.but | 62 |
| abstract_inverted_index.for | 10, 44, 90 |
| abstract_inverted_index.its | 60 |
| abstract_inverted_index.our | 201, 214 |
| abstract_inverted_index.the | 2, 151, 159, 164, 174, 179, 210, 219 |
| abstract_inverted_index.way | 39 |
| abstract_inverted_index.yet | 37 |
| abstract_inverted_index.data | 43, 108 |
| abstract_inverted_index.end, | 78 |
| abstract_inverted_index.from | 70, 200 |
| abstract_inverted_index.fuse | 41 |
| abstract_inverted_index.into | 158 |
| abstract_inverted_index.kind | 144 |
| abstract_inverted_index.maps | 141 |
| abstract_inverted_index.more | 170 |
| abstract_inverted_index.only | 17 |
| abstract_inverted_index.poor | 28 |
| abstract_inverted_index.rely | 18 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.them | 157 |
| abstract_inverted_index.then | 155 |
| abstract_inverted_index.this | 31, 77 |
| abstract_inverted_index.uses | 96 |
| abstract_inverted_index.with | 218 |
| abstract_inverted_index.(ACI) | 9 |
| abstract_inverted_index.(TPM) | 120 |
| abstract_inverted_index.After | 177 |
| abstract_inverted_index.Then, | 129 |
| abstract_inverted_index.based | 149 |
| abstract_inverted_index.first | 112 |
| abstract_inverted_index.focus | 51, 168 |
| abstract_inverted_index.leads | 26 |
| abstract_inverted_index.maps, | 154, 162 |
| abstract_inverted_index.that, | 178 |
| abstract_inverted_index.which | 25 |
| abstract_inverted_index.(ECIM) | 137 |
| abstract_inverted_index.(i.e., | 57 |
| abstract_inverted_index.Module | 119, 136, 183 |
| abstract_inverted_index.devise | 131 |
| abstract_inverted_index.fusion | 49 |
| abstract_inverted_index.inject | 65 |
| abstract_inverted_index.paper, | 32 |
| abstract_inverted_index.(ICIM), | 184 |
| abstract_inverted_index.Chamber | 92 |
| abstract_inverted_index.Encoder | 166 |
| abstract_inverted_index.Network | 88 |
| abstract_inverted_index.Tabular | 117 |
| abstract_inverted_index.Uveitis | 0 |
| abstract_inverted_index.chamber | 7 |
| abstract_inverted_index.conduct | 205 |
| abstract_inverted_index.current | 14 |
| abstract_inverted_index.dataset | 199 |
| abstract_inverted_index.demands | 1 |
| abstract_inverted_index.develop | 113 |
| abstract_inverted_index.disease | 23 |
| abstract_inverted_index.extract | 122 |
| abstract_inverted_index.feature | 124, 153, 161 |
| abstract_inverted_index.further | 188 |
| abstract_inverted_index.images, | 103, 105 |
| abstract_inverted_index.images. | 176 |
| abstract_inverted_index.imaging | 74 |
| abstract_inverted_index.jointly | 82 |
| abstract_inverted_index.limited | 21 |
| abstract_inverted_index.methods | 16, 222 |
| abstract_inverted_index.neglect | 63 |
| abstract_inverted_index.optical | 99 |
| abstract_inverted_index.optimal | 11 |
| abstract_inverted_index.precise | 3 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.segment | 98 |
| abstract_inverted_index.tabular | 152 |
| abstract_inverted_index.various | 224 |
| abstract_inverted_index.(AS-OCT) | 102 |
| abstract_inverted_index.Anterior | 91 |
| abstract_inverted_index.EiCI-Net | 216 |
| abstract_inverted_index.Encoders | 115 |
| abstract_inverted_index.Explicit | 83, 133 |
| abstract_inverted_index.Finally, | 193 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Implicit | 180 |
| abstract_inverted_index.Notably, | 47 |
| abstract_inverted_index.allowing | 163 |
| abstract_inverted_index.anterior | 6, 97 |
| abstract_inverted_index.clinical | 71, 107, 147 |
| abstract_inverted_index.compared | 217 |
| abstract_inverted_index.enhances | 190 |
| abstract_inverted_index.existing | 48 |
| abstract_inverted_index.explicit | 66, 146 |
| abstract_inverted_index.generate | 139 |
| abstract_inverted_index.hospital | 203 |
| abstract_inverted_index.implicit | 54, 85 |
| abstract_inverted_index.jointly. | 109 |
| abstract_inverted_index.metrics. | 225 |
| abstract_inverted_index.modality | 55, 67, 191 |
| abstract_inverted_index.network, | 187 |
| abstract_inverted_index.proposed | 215 |
| abstract_inverted_index.superior | 211 |
| abstract_inverted_index.CNN-Based | 114, 165 |
| abstract_inverted_index.Diagnosis | 94 |
| abstract_inverted_index.attention | 140 |
| abstract_inverted_index.coherence | 100 |
| abstract_inverted_index.construct | 195 |
| abstract_inverted_index.diagnosis | 4 |
| abstract_inverted_index.different | 127 |
| abstract_inverted_index.effective | 171 |
| abstract_inverted_index.efficient | 123 |
| abstract_inverted_index.knowledge | 72, 148 |
| abstract_inverted_index.paradigms | 50 |
| abstract_inverted_index.promising | 36 |
| abstract_inverted_index.property. | 75 |
| abstract_inverted_index.slit-lamp | 104, 160, 175 |
| abstract_inverted_index.(EiCI-Net) | 89 |
| abstract_inverted_index.Processing | 118 |
| abstract_inverted_index.diagnosis. | 46 |
| abstract_inverted_index.diagnostic | 15 |
| abstract_inverted_index.empowering | 53 |
| abstract_inverted_index.especially | 69 |
| abstract_inverted_index.implicitly | 189 |
| abstract_inverted_index.integrated | 156 |
| abstract_inverted_index.multimodal | 42 |
| abstract_inverted_index.real-world | 198 |
| abstract_inverted_index.sufficient | 206 |
| abstract_inverted_index.tomography | 101 |
| abstract_inverted_index.treatment. | 12 |
| abstract_inverted_index.variants), | 61 |
| abstract_inverted_index.Cross-Modal | 86, 134, 181 |
| abstract_inverted_index.Interaction | 87, 135, 182 |
| abstract_inverted_index.challenging | 38 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.experiments | 207 |
| abstract_inverted_index.investigate | 34 |
| abstract_inverted_index.modalities. | 128 |
| abstract_inverted_index.performance | 212 |
| abstract_inverted_index.Inflammation | 93 |
| abstract_inverted_index.considerable | 197 |
| abstract_inverted_index.inflammation | 8 |
| abstract_inverted_index.interactions | 56 |
| abstract_inverted_index.performance. | 29 |
| abstract_inverted_index.perspective, | 24 |
| abstract_inverted_index.single-modal | 22 |
| abstract_inverted_index.Specifically, | 110 |
| abstract_inverted_index.collaborative | 202 |
| abstract_inverted_index.interactions, | 68 |
| abstract_inverted_index.interactions. | 192 |
| abstract_inverted_index.classification | 221 |
| abstract_inverted_index.self-attention | 58 |
| abstract_inverted_index.informativeness | 172 |
| abstract_inverted_index.representations | 125 |
| abstract_inverted_index.state-of-the-art | 220 |
| abstract_inverted_index.transformer-based | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |