Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural Networks Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1912.07882
In this work, we aim to predict the future motion of vehicles in a traffic scene by explicitly modeling their pairwise interactions. Specifically, we propose a graph neural network that jointly predicts the discrete interaction modes and 5-second future trajectories for all agents in the scene. Our model infers an interaction graph whose nodes are agents and whose edges capture the long-term interaction intents among the agents. In order to train the model to recognize known modes of interaction, we introduce an auto-labeling function to generate ground truth interaction labels. Using a large-scale real-world driving dataset, we demonstrate that jointly predicting the trajectories along with the explicit interaction types leads to significantly lower trajectory error than baseline methods. Finally, we show through simulation studies that the learned interaction modes are semantically meaningful.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1912.07882
- https://arxiv.org/pdf/1912.07882
- OA Status
- green
- Cited By
- 30
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995962413
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995962413Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1912.07882Digital Object Identifier
- Title
-
Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural NetworksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-17Full publication date if available
- Authors
-
Donsuk Lee, Yiming Gu, Jerrick Hoang, Micol Marchetti-BowickList of authors in order
- Landing page
-
https://arxiv.org/abs/1912.07882Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1912.07882Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1912.07882Direct OA link when available
- Concepts
-
Joint (building), Trajectory, Computer science, Artificial neural network, Graph, Artificial intelligence, Engineering, Theoretical computer science, Physics, Astronomy, Architectural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
30Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 7, 2022: 4, 2021: 10Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995962413 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1912.07882 |
| ids.doi | https://doi.org/10.48550/arxiv.1912.07882 |
| ids.mag | 2995962413 |
| ids.openalex | https://openalex.org/W2995962413 |
| fwci | |
| type | preprint |
| title | Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11099 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Autonomous Vehicle Technology and Safety |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9805999994277954 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9789999723434448 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18555067 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6607322692871094 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[0].display_name | Joint (building) |
| concepts[1].id | https://openalex.org/C13662910 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6155679821968079 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[1].display_name | Trajectory |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5829886794090271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5512923002243042 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C132525143 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49727705121040344 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[4].display_name | Graph |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40742066502571106 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C127413603 |
| concepts[6].level | 0 |
| concepts[6].score | 0.15030580759048462 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[6].display_name | Engineering |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.14471688866615295 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09191766381263733 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C1276947 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[9].display_name | Astronomy |
| concepts[10].id | https://openalex.org/C170154142 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[10].display_name | Architectural engineering |
| keywords[0].id | https://openalex.org/keywords/joint |
| keywords[0].score | 0.6607322692871094 |
| keywords[0].display_name | Joint (building) |
| keywords[1].id | https://openalex.org/keywords/trajectory |
| keywords[1].score | 0.6155679821968079 |
| keywords[1].display_name | Trajectory |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5829886794090271 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5512923002243042 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/graph |
| keywords[4].score | 0.49727705121040344 |
| keywords[4].display_name | Graph |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.40742066502571106 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/engineering |
| keywords[6].score | 0.15030580759048462 |
| keywords[6].display_name | Engineering |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.14471688866615295 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.09191766381263733 |
| keywords[8].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1912.07882 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1912.07882 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1912.07882 |
| locations[1].id | doi:10.48550/arxiv.1912.07882 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1912.07882 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072237561 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Donsuk Lee |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I592451 |
| authorships[0].affiliations[0].raw_affiliation_string | Indiana University* |
| authorships[0].institutions[0].id | https://openalex.org/I592451 |
| authorships[0].institutions[0].ror | https://ror.org/01kg8sb98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I592451 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Indiana University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Donsuk Lee |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Indiana University* |
| authorships[1].author.id | https://openalex.org/A5102216183 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yiming Gu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yiming Gu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050493653 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jerrick Hoang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jerrick Hoang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5012471136 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Micol Marchetti-Bowick |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Micol Marchetti-Bowick |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1912.07882 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-12-26T00:00:00 |
| display_name | Joint Interaction and Trajectory Prediction for Autonomous Driving using Graph Neural Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11099 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Autonomous Vehicle Technology and Safety |
| related_works | https://openalex.org/W1941703695, https://openalex.org/W3131574667, https://openalex.org/W4323768008, https://openalex.org/W4248382324, https://openalex.org/W4360995134, https://openalex.org/W2039473718, https://openalex.org/W2387529410, https://openalex.org/W3023605104, https://openalex.org/W2383578611, https://openalex.org/W2987583674 |
| cited_by_count | 30 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 10 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1912.07882 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1912.07882 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1912.07882 |
| primary_location.id | pmh:oai:arXiv.org:1912.07882 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1912.07882 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1912.07882 |
| publication_date | 2019-12-17 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2886617718, https://openalex.org/W2964338167, https://openalex.org/W2774231091, https://openalex.org/W3090789587, https://openalex.org/W2167224731, https://openalex.org/W2963906196, https://openalex.org/W2982745079, https://openalex.org/W3105115779, https://openalex.org/W2424778531, https://openalex.org/W2963062607, https://openalex.org/W2121806728, https://openalex.org/W2964321324, https://openalex.org/W2964193755, https://openalex.org/W2967177252, https://openalex.org/W3010072020, https://openalex.org/W2119112357, https://openalex.org/W2139137304, https://openalex.org/W2055207897, https://openalex.org/W2963461379, https://openalex.org/W2963464736, https://openalex.org/W2914524146, https://openalex.org/W2798930779, https://openalex.org/W2963914175, https://openalex.org/W2898900571 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 13, 25, 91 |
| abstract_inverted_index.In | 0, 67 |
| abstract_inverted_index.an | 49, 81 |
| abstract_inverted_index.by | 16 |
| abstract_inverted_index.in | 12, 43 |
| abstract_inverted_index.of | 10, 77 |
| abstract_inverted_index.to | 5, 69, 73, 84, 110 |
| abstract_inverted_index.we | 3, 23, 79, 96, 119 |
| abstract_inverted_index.Our | 46 |
| abstract_inverted_index.aim | 4 |
| abstract_inverted_index.all | 41 |
| abstract_inverted_index.and | 36, 56 |
| abstract_inverted_index.are | 54, 129 |
| abstract_inverted_index.for | 40 |
| abstract_inverted_index.the | 7, 32, 44, 60, 65, 71, 101, 105, 125 |
| abstract_inverted_index.show | 120 |
| abstract_inverted_index.than | 115 |
| abstract_inverted_index.that | 29, 98, 124 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 104 |
| abstract_inverted_index.Using | 90 |
| abstract_inverted_index.along | 103 |
| abstract_inverted_index.among | 64 |
| abstract_inverted_index.edges | 58 |
| abstract_inverted_index.error | 114 |
| abstract_inverted_index.graph | 26, 51 |
| abstract_inverted_index.known | 75 |
| abstract_inverted_index.leads | 109 |
| abstract_inverted_index.lower | 112 |
| abstract_inverted_index.model | 47, 72 |
| abstract_inverted_index.modes | 35, 76, 128 |
| abstract_inverted_index.nodes | 53 |
| abstract_inverted_index.order | 68 |
| abstract_inverted_index.scene | 15 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.train | 70 |
| abstract_inverted_index.truth | 87 |
| abstract_inverted_index.types | 108 |
| abstract_inverted_index.whose | 52, 57 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.agents | 42, 55 |
| abstract_inverted_index.future | 8, 38 |
| abstract_inverted_index.ground | 86 |
| abstract_inverted_index.infers | 48 |
| abstract_inverted_index.motion | 9 |
| abstract_inverted_index.neural | 27 |
| abstract_inverted_index.scene. | 45 |
| abstract_inverted_index.agents. | 66 |
| abstract_inverted_index.capture | 59 |
| abstract_inverted_index.driving | 94 |
| abstract_inverted_index.intents | 63 |
| abstract_inverted_index.jointly | 30, 99 |
| abstract_inverted_index.labels. | 89 |
| abstract_inverted_index.learned | 126 |
| abstract_inverted_index.network | 28 |
| abstract_inverted_index.predict | 6 |
| abstract_inverted_index.propose | 24 |
| abstract_inverted_index.studies | 123 |
| abstract_inverted_index.through | 121 |
| abstract_inverted_index.traffic | 14 |
| abstract_inverted_index.5-second | 37 |
| abstract_inverted_index.Finally, | 118 |
| abstract_inverted_index.baseline | 116 |
| abstract_inverted_index.dataset, | 95 |
| abstract_inverted_index.discrete | 33 |
| abstract_inverted_index.explicit | 106 |
| abstract_inverted_index.function | 83 |
| abstract_inverted_index.generate | 85 |
| abstract_inverted_index.methods. | 117 |
| abstract_inverted_index.modeling | 18 |
| abstract_inverted_index.pairwise | 20 |
| abstract_inverted_index.predicts | 31 |
| abstract_inverted_index.vehicles | 11 |
| abstract_inverted_index.introduce | 80 |
| abstract_inverted_index.long-term | 61 |
| abstract_inverted_index.recognize | 74 |
| abstract_inverted_index.explicitly | 17 |
| abstract_inverted_index.predicting | 100 |
| abstract_inverted_index.real-world | 93 |
| abstract_inverted_index.simulation | 122 |
| abstract_inverted_index.trajectory | 113 |
| abstract_inverted_index.demonstrate | 97 |
| abstract_inverted_index.interaction | 34, 50, 62, 88, 107, 127 |
| abstract_inverted_index.large-scale | 92 |
| abstract_inverted_index.meaningful. | 131 |
| abstract_inverted_index.interaction, | 78 |
| abstract_inverted_index.semantically | 130 |
| abstract_inverted_index.trajectories | 39, 102 |
| abstract_inverted_index.Specifically, | 22 |
| abstract_inverted_index.auto-labeling | 82 |
| abstract_inverted_index.interactions. | 21 |
| abstract_inverted_index.significantly | 111 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |