Joint optimization of vehicle-group trajectory and signal timing: Introducing the white phase for mixed-autonomy traffic stream Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.trc.2020.102659
This study develops a novel mixed-integer non-linear program to control the trajectory of mixed connected-automated vehicles (CAVs) and connected human-driven vehicles (CHVs) through signalized intersections. The trajectory of CAVs is continuously optimized via a central methodology, while a new "white" phase is introduced to enforce CHVs to follow their immediate front vehicle. The movement of CHVs is incorporated in the optimization framework utilizing a customized linear car-following model. During the white phase, CAVs lead groups of CHVs through an intersection. The proposed formulation determines the optimal signal indication for each lane-group in each time step. We have developed a receding horizon control framework to solve the problem. The case study results indicate that the proposed methodology successfully controls the mixed CAV-CHV traffic under various CAV market penetration rates and different demand levels. The results reveal that a higher CAV market penetration rate induces more frequent white phase indication compared to green-red signals. The proposed program reduces the total delay by 19.6%–96.2% compared to a fully-actuated signal control optimized by a state-of-practice traffic signal timing optimization software.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.trc.2020.102659
- OA Status
- hybrid
- Cited By
- 152
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3029232882
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3029232882Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.trc.2020.102659Digital Object Identifier
- Title
-
Joint optimization of vehicle-group trajectory and signal timing: Introducing the white phase for mixed-autonomy traffic streamWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-26Full publication date if available
- Authors
-
Ramin Niroumand, Mehrdad Tajalli, Leila Hajibabai, Ali HajbabaieList of authors in order
- Landing page
-
https://doi.org/10.1016/j.trc.2020.102659Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.trc.2020.102659Direct OA link when available
- Concepts
-
Intersection (aeronautics), SIGNAL (programming language), Trajectory optimization, Control theory (sociology), Model predictive control, Computer science, Trajectory, Market penetration, Linear programming, Optimal control, Mathematical optimization, Engineering, Control (management), Mathematics, Algorithm, Artificial intelligence, Electrical engineering, Aerospace engineering, Astronomy, Programming language, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
152Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 27, 2024: 37, 2023: 38, 2022: 22, 2021: 24Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3029232882 |
|---|---|
| doi | https://doi.org/10.1016/j.trc.2020.102659 |
| ids.doi | https://doi.org/10.1016/j.trc.2020.102659 |
| ids.mag | 3029232882 |
| ids.openalex | https://openalex.org/W3029232882 |
| fwci | 12.89621987 |
| type | article |
| title | Joint optimization of vehicle-group trajectory and signal timing: Introducing the white phase for mixed-autonomy traffic stream |
| biblio.issue | |
| biblio.volume | 116 |
| biblio.last_page | 102659 |
| biblio.first_page | 102659 |
| topics[0].id | https://openalex.org/T10524 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Traffic control and management |
| topics[1].id | https://openalex.org/T11099 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9958999752998352 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2203 |
| topics[1].subfield.display_name | Automotive Engineering |
| topics[1].display_name | Autonomous Vehicle Technology and Safety |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| is_xpac | False |
| apc_list.value | 4050 |
| apc_list.currency | USD |
| apc_list.value_usd | 4050 |
| apc_paid.value | 4050 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4050 |
| concepts[0].id | https://openalex.org/C64543145 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5687636733055115 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q162942 |
| concepts[0].display_name | Intersection (aeronautics) |
| concepts[1].id | https://openalex.org/C2779843651 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5496066212654114 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[1].display_name | SIGNAL (programming language) |
| concepts[2].id | https://openalex.org/C173246807 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5095317959785461 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7833062 |
| concepts[2].display_name | Trajectory optimization |
| concepts[3].id | https://openalex.org/C47446073 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5084277987480164 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[3].display_name | Control theory (sociology) |
| concepts[4].id | https://openalex.org/C172205157 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49458667635917664 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1782962 |
| concepts[4].display_name | Model predictive control |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48099076747894287 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C13662910 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47013717889785767 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[6].display_name | Trajectory |
| concepts[7].id | https://openalex.org/C2777648813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41177552938461304 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2508647 |
| concepts[7].display_name | Market penetration |
| concepts[8].id | https://openalex.org/C41045048 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41056978702545166 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q202843 |
| concepts[8].display_name | Linear programming |
| concepts[9].id | https://openalex.org/C91575142 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3145146369934082 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1971426 |
| concepts[9].display_name | Optimal control |
| concepts[10].id | https://openalex.org/C126255220 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28681647777557373 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[10].display_name | Mathematical optimization |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2797176241874695 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C2775924081 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23464977741241455 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[12].display_name | Control (management) |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.22011318802833557 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.150516539812088 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12792283296585083 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C119599485 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08237698674201965 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[16].display_name | Electrical engineering |
| concepts[17].id | https://openalex.org/C146978453 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0734650194644928 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[17].display_name | Aerospace engineering |
| concepts[18].id | https://openalex.org/C1276947 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[18].display_name | Astronomy |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/intersection |
| keywords[0].score | 0.5687636733055115 |
| keywords[0].display_name | Intersection (aeronautics) |
| keywords[1].id | https://openalex.org/keywords/signal |
| keywords[1].score | 0.5496066212654114 |
| keywords[1].display_name | SIGNAL (programming language) |
| keywords[2].id | https://openalex.org/keywords/trajectory-optimization |
| keywords[2].score | 0.5095317959785461 |
| keywords[2].display_name | Trajectory optimization |
| keywords[3].id | https://openalex.org/keywords/control-theory |
| keywords[3].score | 0.5084277987480164 |
| keywords[3].display_name | Control theory (sociology) |
| keywords[4].id | https://openalex.org/keywords/model-predictive-control |
| keywords[4].score | 0.49458667635917664 |
| keywords[4].display_name | Model predictive control |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.48099076747894287 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/trajectory |
| keywords[6].score | 0.47013717889785767 |
| keywords[6].display_name | Trajectory |
| keywords[7].id | https://openalex.org/keywords/market-penetration |
| keywords[7].score | 0.41177552938461304 |
| keywords[7].display_name | Market penetration |
| keywords[8].id | https://openalex.org/keywords/linear-programming |
| keywords[8].score | 0.41056978702545166 |
| keywords[8].display_name | Linear programming |
| keywords[9].id | https://openalex.org/keywords/optimal-control |
| keywords[9].score | 0.3145146369934082 |
| keywords[9].display_name | Optimal control |
| keywords[10].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[10].score | 0.28681647777557373 |
| keywords[10].display_name | Mathematical optimization |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.2797176241874695 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/control |
| keywords[12].score | 0.23464977741241455 |
| keywords[12].display_name | Control (management) |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.22011318802833557 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.150516539812088 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.12792283296585083 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/electrical-engineering |
| keywords[16].score | 0.08237698674201965 |
| keywords[16].display_name | Electrical engineering |
| keywords[17].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[17].score | 0.0734650194644928 |
| keywords[17].display_name | Aerospace engineering |
| language | en |
| locations[0].id | doi:10.1016/j.trc.2020.102659 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S64511102 |
| locations[0].source.issn | 0968-090X, 1879-2359 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0968-090X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Transportation Research Part C Emerging Technologies |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Transportation Research Part C: Emerging Technologies |
| locations[0].landing_page_url | https://doi.org/10.1016/j.trc.2020.102659 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074149881 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2242-187X |
| authorships[0].author.display_name | Ramin Niroumand |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[0].institutions[0].id | https://openalex.org/I137902535 |
| authorships[0].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | North Carolina State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ramin Niroumand |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[1].author.id | https://openalex.org/A5014453545 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4161-7344 |
| authorships[1].author.display_name | Mehrdad Tajalli |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[1].institutions[0].id | https://openalex.org/I137902535 |
| authorships[1].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | North Carolina State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mehrdad Tajalli |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[2].author.id | https://openalex.org/A5004516348 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7032-7231 |
| authorships[2].author.display_name | Leila Hajibabai |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[2].institutions[0].id | https://openalex.org/I137902535 |
| authorships[2].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | North Carolina State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leila Hajibabai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[3].author.id | https://openalex.org/A5086598856 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6757-1981 |
| authorships[3].author.display_name | Ali Hajbabaie |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| authorships[3].institutions[0].id | https://openalex.org/I137902535 |
| authorships[3].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | North Carolina State University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ali Hajbabaie |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.trc.2020.102659 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Joint optimization of vehicle-group trajectory and signal timing: Introducing the white phase for mixed-autonomy traffic stream |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10524 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Traffic control and management |
| related_works | https://openalex.org/W1990079087, https://openalex.org/W2101188133, https://openalex.org/W3202234113, https://openalex.org/W4248731570, https://openalex.org/W2381210024, https://openalex.org/W2384015130, https://openalex.org/W2094121346, https://openalex.org/W4285595274, https://openalex.org/W3135469233, https://openalex.org/W2003479292 |
| cited_by_count | 152 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 27 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 37 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 38 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 22 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 24 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.trc.2020.102659 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S64511102 |
| best_oa_location.source.issn | 0968-090X, 1879-2359 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0968-090X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Transportation Research Part C Emerging Technologies |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Transportation Research Part C: Emerging Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.trc.2020.102659 |
| primary_location.id | doi:10.1016/j.trc.2020.102659 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S64511102 |
| primary_location.source.issn | 0968-090X, 1879-2359 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0968-090X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Transportation Research Part C Emerging Technologies |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Transportation Research Part C: Emerging Technologies |
| primary_location.landing_page_url | https://doi.org/10.1016/j.trc.2020.102659 |
| publication_date | 2020-05-26 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2616273432, https://openalex.org/W2157525649, https://openalex.org/W2594197918, https://openalex.org/W2094039233, https://openalex.org/W2579117143, https://openalex.org/W6674980194, https://openalex.org/W2137514195, https://openalex.org/W2793438216, https://openalex.org/W2155791515, https://openalex.org/W1987437394, https://openalex.org/W2903400114, https://openalex.org/W2008098263, https://openalex.org/W1967258332, https://openalex.org/W2514358729, https://openalex.org/W6731017783, https://openalex.org/W2008082561, https://openalex.org/W2034320159, https://openalex.org/W1964554804, https://openalex.org/W2713016753, https://openalex.org/W2803363818, https://openalex.org/W2913512536, https://openalex.org/W2947112518, https://openalex.org/W2942618255, https://openalex.org/W6675908493, https://openalex.org/W2131591296, https://openalex.org/W2790005177, https://openalex.org/W3033103407, https://openalex.org/W1976170943, https://openalex.org/W2940821858, https://openalex.org/W2800510943, https://openalex.org/W2099860849, https://openalex.org/W2557406285, https://openalex.org/W2951032928, https://openalex.org/W4299572933, https://openalex.org/W2948573435, https://openalex.org/W4244132322, https://openalex.org/W2905709150, https://openalex.org/W2887421613, https://openalex.org/W2566128861 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 3, 33, 37, 63, 98, 136, 163, 169 |
| abstract_inverted_index.We | 95 |
| abstract_inverted_index.an | 78 |
| abstract_inverted_index.by | 159, 168 |
| abstract_inverted_index.in | 58, 91 |
| abstract_inverted_index.is | 29, 41, 56 |
| abstract_inverted_index.of | 12, 27, 54, 75 |
| abstract_inverted_index.to | 8, 43, 46, 103, 149, 162 |
| abstract_inverted_index.CAV | 124, 138 |
| abstract_inverted_index.The | 25, 52, 80, 107, 132, 152 |
| abstract_inverted_index.and | 17, 128 |
| abstract_inverted_index.for | 88 |
| abstract_inverted_index.new | 38 |
| abstract_inverted_index.the | 10, 59, 69, 84, 105, 113, 118, 156 |
| abstract_inverted_index.via | 32 |
| abstract_inverted_index.CAVs | 28, 72 |
| abstract_inverted_index.CHVs | 45, 55, 76 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.case | 108 |
| abstract_inverted_index.each | 89, 92 |
| abstract_inverted_index.have | 96 |
| abstract_inverted_index.lead | 73 |
| abstract_inverted_index.more | 143 |
| abstract_inverted_index.rate | 141 |
| abstract_inverted_index.that | 112, 135 |
| abstract_inverted_index.time | 93 |
| abstract_inverted_index.delay | 158 |
| abstract_inverted_index.front | 50 |
| abstract_inverted_index.mixed | 13, 119 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.phase | 40, 146 |
| abstract_inverted_index.rates | 127 |
| abstract_inverted_index.solve | 104 |
| abstract_inverted_index.step. | 94 |
| abstract_inverted_index.study | 1, 109 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.total | 157 |
| abstract_inverted_index.under | 122 |
| abstract_inverted_index.while | 36 |
| abstract_inverted_index.white | 70, 145 |
| abstract_inverted_index.(CAVs) | 16 |
| abstract_inverted_index.(CHVs) | 21 |
| abstract_inverted_index.During | 68 |
| abstract_inverted_index.demand | 130 |
| abstract_inverted_index.follow | 47 |
| abstract_inverted_index.groups | 74 |
| abstract_inverted_index.higher | 137 |
| abstract_inverted_index.linear | 65 |
| abstract_inverted_index.market | 125, 139 |
| abstract_inverted_index.model. | 67 |
| abstract_inverted_index.phase, | 71 |
| abstract_inverted_index.reveal | 134 |
| abstract_inverted_index.signal | 86, 165, 172 |
| abstract_inverted_index.timing | 173 |
| abstract_inverted_index."white" | 39 |
| abstract_inverted_index.CAV-CHV | 120 |
| abstract_inverted_index.central | 34 |
| abstract_inverted_index.control | 9, 101, 166 |
| abstract_inverted_index.enforce | 44 |
| abstract_inverted_index.horizon | 100 |
| abstract_inverted_index.induces | 142 |
| abstract_inverted_index.levels. | 131 |
| abstract_inverted_index.optimal | 85 |
| abstract_inverted_index.program | 7, 154 |
| abstract_inverted_index.reduces | 155 |
| abstract_inverted_index.results | 110, 133 |
| abstract_inverted_index.through | 22, 77 |
| abstract_inverted_index.traffic | 121, 171 |
| abstract_inverted_index.various | 123 |
| abstract_inverted_index.compared | 148, 161 |
| abstract_inverted_index.controls | 117 |
| abstract_inverted_index.develops | 2 |
| abstract_inverted_index.frequent | 144 |
| abstract_inverted_index.indicate | 111 |
| abstract_inverted_index.movement | 53 |
| abstract_inverted_index.problem. | 106 |
| abstract_inverted_index.proposed | 81, 114, 153 |
| abstract_inverted_index.receding | 99 |
| abstract_inverted_index.signals. | 151 |
| abstract_inverted_index.vehicle. | 51 |
| abstract_inverted_index.vehicles | 15, 20 |
| abstract_inverted_index.connected | 18 |
| abstract_inverted_index.developed | 97 |
| abstract_inverted_index.different | 129 |
| abstract_inverted_index.framework | 61, 102 |
| abstract_inverted_index.green-red | 150 |
| abstract_inverted_index.immediate | 49 |
| abstract_inverted_index.optimized | 31, 167 |
| abstract_inverted_index.software. | 175 |
| abstract_inverted_index.utilizing | 62 |
| abstract_inverted_index.customized | 64 |
| abstract_inverted_index.determines | 83 |
| abstract_inverted_index.indication | 87, 147 |
| abstract_inverted_index.introduced | 42 |
| abstract_inverted_index.lane-group | 90 |
| abstract_inverted_index.non-linear | 6 |
| abstract_inverted_index.signalized | 23 |
| abstract_inverted_index.trajectory | 11, 26 |
| abstract_inverted_index.formulation | 82 |
| abstract_inverted_index.methodology | 115 |
| abstract_inverted_index.penetration | 126, 140 |
| abstract_inverted_index.continuously | 30 |
| abstract_inverted_index.human-driven | 19 |
| abstract_inverted_index.incorporated | 57 |
| abstract_inverted_index.methodology, | 35 |
| abstract_inverted_index.optimization | 60, 174 |
| abstract_inverted_index.successfully | 116 |
| abstract_inverted_index.19.6%–96.2% | 160 |
| abstract_inverted_index.car-following | 66 |
| abstract_inverted_index.intersection. | 79 |
| abstract_inverted_index.mixed-integer | 5 |
| abstract_inverted_index.fully-actuated | 164 |
| abstract_inverted_index.intersections. | 24 |
| abstract_inverted_index.state-of-practice | 170 |
| abstract_inverted_index.connected-automated | 14 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5086598856 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I137902535 |
| citation_normalized_percentile.value | 0.99289415 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |