Joint Probability Estimation Using Tensor Decomposition and Dictionaries Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.01667
In this work, we study non-parametric estimation of joint probabilities of a given set of discrete and continuous random variables from their (empirically estimated) 2D marginals, under the assumption that the joint probability could be decomposed and approximated by a mixture of product densities/mass functions. The problem of estimating the joint probability density function (PDF) using semi-parametric techniques such as Gaussian Mixture Models (GMMs) is widely studied. However such techniques yield poor results when the underlying densities are mixtures of various other families of distributions such as Laplacian or generalized Gaussian, uniform, Cauchy, etc. Further, GMMs are not the best choice to estimate joint distributions which are hybrid in nature, i.e., some random variables are discrete while others are continuous. We present a novel approach for estimating the PDF using ideas from dictionary representations in signal processing coupled with low rank tensor decompositions. To the best our knowledge, this is the first work on estimating joint PDFs employing dictionaries alongside tensor decompositions. We create a dictionary of various families of distributions by inspecting the data, and use it to approximate each decomposed factor of the product in the mixture. Our approach can naturally handle hybrid $N$-dimensional distributions. We test our approach on a variety of synthetic and real datasets to demonstrate its effectiveness in terms of better classification rates and lower error rates, when compared to state of the art estimators.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.01667
- https://arxiv.org/pdf/2203.01667
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226024986
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226024986Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.01667Digital Object Identifier
- Title
-
Joint Probability Estimation Using Tensor Decomposition and DictionariesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-03Full publication date if available
- Authors
-
Shaan Ul Haque, Ajit Rajwade, Karthik S. GurumoorthyList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.01667Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.01667Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.01667Direct OA link when available
- Concepts
-
Joint probability distribution, Mathematics, Estimator, Mixture model, Probability density function, Cauchy distribution, Gaussian, Parametric statistics, Random variable, Applied mathematics, Rank (graph theory), Probability distribution, Probability mass function, Algorithm, Statistics, Combinatorics, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226024986 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.01667 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.01667 |
| ids.openalex | https://openalex.org/W4226024986 |
| fwci | |
| type | preprint |
| title | Joint Probability Estimation Using Tensor Decomposition and Dictionaries |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12303 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2605 |
| topics[0].subfield.display_name | Computational Mathematics |
| topics[0].display_name | Tensor decomposition and applications |
| topics[1].id | https://openalex.org/T11269 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9560999870300293 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Algorithms and Data Compression |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9542999863624573 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18653775 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6581516861915588 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[0].display_name | Joint probability distribution |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6229009628295898 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C185429906 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6079289317131042 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[2].display_name | Estimator |
| concepts[3].id | https://openalex.org/C61224824 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5953604578971863 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2260434 |
| concepts[3].display_name | Mixture model |
| concepts[4].id | https://openalex.org/C197055811 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5824834108352661 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q207522 |
| concepts[4].display_name | Probability density function |
| concepts[5].id | https://openalex.org/C49344536 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5340178608894348 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q726441 |
| concepts[5].display_name | Cauchy distribution |
| concepts[6].id | https://openalex.org/C163716315 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5008978843688965 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[6].display_name | Gaussian |
| concepts[7].id | https://openalex.org/C117251300 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48503464460372925 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[7].display_name | Parametric statistics |
| concepts[8].id | https://openalex.org/C122123141 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47118285298347473 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q176623 |
| concepts[8].display_name | Random variable |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.45037025213241577 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C164226766 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4492987394332886 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[10].display_name | Rank (graph theory) |
| concepts[11].id | https://openalex.org/C149441793 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4455552101135254 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[11].display_name | Probability distribution |
| concepts[12].id | https://openalex.org/C197096303 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41832372546195984 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q869887 |
| concepts[12].display_name | Probability mass function |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3743762671947479 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.27423083782196045 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.103779137134552 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/joint-probability-distribution |
| keywords[0].score | 0.6581516861915588 |
| keywords[0].display_name | Joint probability distribution |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6229009628295898 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/estimator |
| keywords[2].score | 0.6079289317131042 |
| keywords[2].display_name | Estimator |
| keywords[3].id | https://openalex.org/keywords/mixture-model |
| keywords[3].score | 0.5953604578971863 |
| keywords[3].display_name | Mixture model |
| keywords[4].id | https://openalex.org/keywords/probability-density-function |
| keywords[4].score | 0.5824834108352661 |
| keywords[4].display_name | Probability density function |
| keywords[5].id | https://openalex.org/keywords/cauchy-distribution |
| keywords[5].score | 0.5340178608894348 |
| keywords[5].display_name | Cauchy distribution |
| keywords[6].id | https://openalex.org/keywords/gaussian |
| keywords[6].score | 0.5008978843688965 |
| keywords[6].display_name | Gaussian |
| keywords[7].id | https://openalex.org/keywords/parametric-statistics |
| keywords[7].score | 0.48503464460372925 |
| keywords[7].display_name | Parametric statistics |
| keywords[8].id | https://openalex.org/keywords/random-variable |
| keywords[8].score | 0.47118285298347473 |
| keywords[8].display_name | Random variable |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.45037025213241577 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/rank |
| keywords[10].score | 0.4492987394332886 |
| keywords[10].display_name | Rank (graph theory) |
| keywords[11].id | https://openalex.org/keywords/probability-distribution |
| keywords[11].score | 0.4455552101135254 |
| keywords[11].display_name | Probability distribution |
| keywords[12].id | https://openalex.org/keywords/probability-mass-function |
| keywords[12].score | 0.41832372546195984 |
| keywords[12].display_name | Probability mass function |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.3743762671947479 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.27423083782196045 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/combinatorics |
| keywords[15].score | 0.103779137134552 |
| keywords[15].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.01667 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.01667 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.01667 |
| locations[1].id | doi:10.48550/arxiv.2203.01667 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.01667 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085090559 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9557-4071 |
| authorships[0].author.display_name | Shaan Ul Haque |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haque, Shaan ul |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5072824358 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6463-3315 |
| authorships[1].author.display_name | Ajit Rajwade |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rajwade, Ajit |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5063624532 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2483-3723 |
| authorships[2].author.display_name | Karthik S. Gurumoorthy |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gurumoorthy, Karthik S. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.01667 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Joint Probability Estimation Using Tensor Decomposition and Dictionaries |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12303 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2605 |
| primary_topic.subfield.display_name | Computational Mathematics |
| primary_topic.display_name | Tensor decomposition and applications |
| related_works | https://openalex.org/W2883907152, https://openalex.org/W4234449911, https://openalex.org/W1526257359, https://openalex.org/W4249885815, https://openalex.org/W871299571, https://openalex.org/W1534282248, https://openalex.org/W2102345963, https://openalex.org/W3130165856, https://openalex.org/W4288913815, https://openalex.org/W2373670823 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.01667 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.01667 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.01667 |
| primary_location.id | pmh:oai:arXiv.org:2203.01667 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.01667 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.01667 |
| publication_date | 2022-03-03 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 39, 122, 164, 202 |
| abstract_inverted_index.2D | 24 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.To | 143 |
| abstract_inverted_index.We | 120, 162, 197 |
| abstract_inverted_index.as | 59, 86 |
| abstract_inverted_index.be | 34 |
| abstract_inverted_index.by | 38, 171 |
| abstract_inverted_index.in | 108, 134, 186, 213 |
| abstract_inverted_index.is | 64, 149 |
| abstract_inverted_index.it | 177 |
| abstract_inverted_index.of | 7, 10, 14, 41, 47, 79, 83, 166, 169, 183, 204, 215, 227 |
| abstract_inverted_index.on | 153, 201 |
| abstract_inverted_index.or | 88 |
| abstract_inverted_index.to | 101, 178, 209, 225 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.Our | 189 |
| abstract_inverted_index.PDF | 128 |
| abstract_inverted_index.The | 45 |
| abstract_inverted_index.and | 16, 36, 175, 206, 219 |
| abstract_inverted_index.are | 77, 96, 106, 114, 118 |
| abstract_inverted_index.art | 229 |
| abstract_inverted_index.can | 191 |
| abstract_inverted_index.for | 125 |
| abstract_inverted_index.its | 211 |
| abstract_inverted_index.low | 139 |
| abstract_inverted_index.not | 97 |
| abstract_inverted_index.our | 146, 199 |
| abstract_inverted_index.set | 13 |
| abstract_inverted_index.the | 27, 30, 49, 74, 98, 127, 144, 150, 173, 184, 187, 228 |
| abstract_inverted_index.use | 176 |
| abstract_inverted_index.GMMs | 95 |
| abstract_inverted_index.PDFs | 156 |
| abstract_inverted_index.best | 99, 145 |
| abstract_inverted_index.each | 180 |
| abstract_inverted_index.etc. | 93 |
| abstract_inverted_index.from | 20, 131 |
| abstract_inverted_index.poor | 71 |
| abstract_inverted_index.rank | 140 |
| abstract_inverted_index.real | 207 |
| abstract_inverted_index.some | 111 |
| abstract_inverted_index.such | 58, 68, 85 |
| abstract_inverted_index.test | 198 |
| abstract_inverted_index.that | 29 |
| abstract_inverted_index.this | 1, 148 |
| abstract_inverted_index.when | 73, 223 |
| abstract_inverted_index.with | 138 |
| abstract_inverted_index.work | 152 |
| abstract_inverted_index.(PDF) | 54 |
| abstract_inverted_index.could | 33 |
| abstract_inverted_index.data, | 174 |
| abstract_inverted_index.error | 221 |
| abstract_inverted_index.first | 151 |
| abstract_inverted_index.given | 12 |
| abstract_inverted_index.i.e., | 110 |
| abstract_inverted_index.ideas | 130 |
| abstract_inverted_index.joint | 8, 31, 50, 103, 155 |
| abstract_inverted_index.lower | 220 |
| abstract_inverted_index.novel | 123 |
| abstract_inverted_index.other | 81 |
| abstract_inverted_index.rates | 218 |
| abstract_inverted_index.state | 226 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.terms | 214 |
| abstract_inverted_index.their | 21 |
| abstract_inverted_index.under | 26 |
| abstract_inverted_index.using | 55, 129 |
| abstract_inverted_index.which | 105 |
| abstract_inverted_index.while | 116 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.yield | 70 |
| abstract_inverted_index.(GMMs) | 63 |
| abstract_inverted_index.Models | 62 |
| abstract_inverted_index.better | 216 |
| abstract_inverted_index.choice | 100 |
| abstract_inverted_index.create | 163 |
| abstract_inverted_index.factor | 182 |
| abstract_inverted_index.handle | 193 |
| abstract_inverted_index.hybrid | 107, 194 |
| abstract_inverted_index.others | 117 |
| abstract_inverted_index.random | 18, 112 |
| abstract_inverted_index.rates, | 222 |
| abstract_inverted_index.signal | 135 |
| abstract_inverted_index.tensor | 141, 160 |
| abstract_inverted_index.widely | 65 |
| abstract_inverted_index.Cauchy, | 92 |
| abstract_inverted_index.However | 67 |
| abstract_inverted_index.Mixture | 61 |
| abstract_inverted_index.coupled | 137 |
| abstract_inverted_index.density | 52 |
| abstract_inverted_index.mixture | 40 |
| abstract_inverted_index.nature, | 109 |
| abstract_inverted_index.present | 121 |
| abstract_inverted_index.problem | 46 |
| abstract_inverted_index.product | 42, 185 |
| abstract_inverted_index.results | 72 |
| abstract_inverted_index.variety | 203 |
| abstract_inverted_index.various | 80, 167 |
| abstract_inverted_index.Further, | 94 |
| abstract_inverted_index.Gaussian | 60 |
| abstract_inverted_index.approach | 124, 190, 200 |
| abstract_inverted_index.compared | 224 |
| abstract_inverted_index.datasets | 208 |
| abstract_inverted_index.discrete | 15, 115 |
| abstract_inverted_index.estimate | 102 |
| abstract_inverted_index.families | 82, 168 |
| abstract_inverted_index.function | 53 |
| abstract_inverted_index.mixture. | 188 |
| abstract_inverted_index.mixtures | 78 |
| abstract_inverted_index.studied. | 66 |
| abstract_inverted_index.uniform, | 91 |
| abstract_inverted_index.Gaussian, | 90 |
| abstract_inverted_index.Laplacian | 87 |
| abstract_inverted_index.alongside | 159 |
| abstract_inverted_index.densities | 76 |
| abstract_inverted_index.employing | 157 |
| abstract_inverted_index.naturally | 192 |
| abstract_inverted_index.synthetic | 205 |
| abstract_inverted_index.variables | 19, 113 |
| abstract_inverted_index.assumption | 28 |
| abstract_inverted_index.continuous | 17 |
| abstract_inverted_index.decomposed | 35, 181 |
| abstract_inverted_index.dictionary | 132, 165 |
| abstract_inverted_index.estimated) | 23 |
| abstract_inverted_index.estimating | 48, 126, 154 |
| abstract_inverted_index.estimation | 6 |
| abstract_inverted_index.functions. | 44 |
| abstract_inverted_index.inspecting | 172 |
| abstract_inverted_index.knowledge, | 147 |
| abstract_inverted_index.marginals, | 25 |
| abstract_inverted_index.processing | 136 |
| abstract_inverted_index.techniques | 57, 69 |
| abstract_inverted_index.underlying | 75 |
| abstract_inverted_index.approximate | 179 |
| abstract_inverted_index.continuous. | 119 |
| abstract_inverted_index.demonstrate | 210 |
| abstract_inverted_index.estimators. | 230 |
| abstract_inverted_index.generalized | 89 |
| abstract_inverted_index.probability | 32, 51 |
| abstract_inverted_index.(empirically | 22 |
| abstract_inverted_index.approximated | 37 |
| abstract_inverted_index.dictionaries | 158 |
| abstract_inverted_index.distributions | 84, 104, 170 |
| abstract_inverted_index.effectiveness | 212 |
| abstract_inverted_index.probabilities | 9 |
| abstract_inverted_index.classification | 217 |
| abstract_inverted_index.densities/mass | 43 |
| abstract_inverted_index.distributions. | 196 |
| abstract_inverted_index.non-parametric | 5 |
| abstract_inverted_index.$N$-dimensional | 195 |
| abstract_inverted_index.decompositions. | 142, 161 |
| abstract_inverted_index.representations | 133 |
| abstract_inverted_index.semi-parametric | 56 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |