K-HOG Unsupervised Keyframe Identifier (K-HUKI): Extracting action-rich frames with HOG Features and Unsupervised Learning Article Swipe
Abhishek Saurabh
,
Ayush Aggrawal
,
Saurav Gupta
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6567616/v1
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6567616/v1
This Report proposes a pioneering method for keyframe identification in activity interpretation. It seamlessly integrates HOG features for informative representation and the flexibility of unsupervised learning through K-means clustering. This approach, named K-HUKI, is further empowered by a robust architecture combining 3D-CNNs for capturing temporal and spatial information and GRUs for handling perpetual dependencies. Extensive evaluation on the UCF101 dataset demonstrates a remarkable improvement in accuracy. By identifying action-rich frames at exceptional speed (almost 5-fold) compared to CNN based approach's and achieving unparalleled accuracy, K-HUKI establishes itself as a groundbreaking advancement in keyframe detection.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6567616/v1
- https://www.researchsquare.com/article/rs-6567616/latest.pdf
- OA Status
- gold
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410070582
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410070582Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6567616/v1Digital Object Identifier
- Title
-
K-HOG Unsupervised Keyframe Identifier (K-HUKI): Extracting action-rich frames with HOG Features and Unsupervised LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-05Full publication date if available
- Authors
-
Abhishek Saurabh, Ayush Aggrawal, Saurav GuptaList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6567616/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6567616/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6567616/latest.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Unsupervised learning, Computer science, Pattern recognition (psychology), Identifier, Action (physics), Physics, Quantum mechanics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410070582 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6567616/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6567616/v1 |
| ids.openalex | https://openalex.org/W4410070582 |
| fwci | 0.0 |
| type | preprint |
| title | K-HOG Unsupervised Keyframe Identifier (K-HUKI): Extracting action-rich frames with HOG Features and Unsupervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| topics[1].id | https://openalex.org/T10812 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Human Pose and Action Recognition |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976999759674072 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.722151517868042 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C8038995 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6921825408935547 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[1].display_name | Unsupervised learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6688755750656128 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6089358925819397 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C154504017 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5861673355102539 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q853614 |
| concepts[4].display_name | Identifier |
| concepts[5].id | https://openalex.org/C2780791683 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45589756965637207 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[5].display_name | Action (physics) |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C62520636 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[7].display_name | Quantum mechanics |
| concepts[8].id | https://openalex.org/C199360897 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[8].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.722151517868042 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[1].score | 0.6921825408935547 |
| keywords[1].display_name | Unsupervised learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6688755750656128 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6089358925819397 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/identifier |
| keywords[4].score | 0.5861673355102539 |
| keywords[4].display_name | Identifier |
| keywords[5].id | https://openalex.org/keywords/action |
| keywords[5].score | 0.45589756965637207 |
| keywords[5].display_name | Action (physics) |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6567616/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6567616/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6567616/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007450486 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3782-2123 |
| authorships[0].author.display_name | Abhishek Saurabh |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I26285277 |
| authorships[0].affiliations[0].raw_affiliation_string | Guru Ghasidas Vishwavidyalaya |
| authorships[0].institutions[0].id | https://openalex.org/I26285277 |
| authorships[0].institutions[0].ror | https://ror.org/05bvxq496 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I26285277 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Guru Ghasidas Vishwavidyalaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Adarsh Saurabh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guru Ghasidas Vishwavidyalaya |
| authorships[1].author.id | https://openalex.org/A5117429324 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ayush Aggrawal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I26285277 |
| authorships[1].affiliations[0].raw_affiliation_string | Guru Ghasidas Vishwavidyalaya |
| authorships[1].institutions[0].id | https://openalex.org/I26285277 |
| authorships[1].institutions[0].ror | https://ror.org/05bvxq496 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I26285277 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Guru Ghasidas Vishwavidyalaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ayush Aggrawal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Guru Ghasidas Vishwavidyalaya |
| authorships[2].author.id | https://openalex.org/A5035658922 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8028-547X |
| authorships[2].author.display_name | Saurav Gupta |
| authorships[2].affiliations[0].raw_affiliation_string | A.P. Shah Institute of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Saurav Gupta |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | A.P. Shah Institute of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6567616/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | K-HOG Unsupervised Keyframe Identifier (K-HUKI): Extracting action-rich frames with HOG Features and Unsupervised Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| related_works | https://openalex.org/W4378651134, https://openalex.org/W4252684102, https://openalex.org/W2608983118, https://openalex.org/W2352307597, https://openalex.org/W1979633005, https://openalex.org/W2163724607, https://openalex.org/W3135403405, https://openalex.org/W2023227762, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6567616/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6567616/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6567616/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6567616/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6567616/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6567616/v1 |
| publication_date | 2025-05-05 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4383911020, https://openalex.org/W2129291408, https://openalex.org/W2134577448, https://openalex.org/W1975449922, https://openalex.org/W3032918600, https://openalex.org/W6600474606, https://openalex.org/W2769581371, https://openalex.org/W6601487527, https://openalex.org/W3154571917, https://openalex.org/W3172990466, https://openalex.org/W4405869431, https://openalex.org/W2939058609, https://openalex.org/W3188533866, https://openalex.org/W4280579689, https://openalex.org/W1522734439, https://openalex.org/W3003858448, https://openalex.org/W3118442650, https://openalex.org/W4386268914, https://openalex.org/W6601191032, https://openalex.org/W6601752520, https://openalex.org/W4399860536, https://openalex.org/W2806990378, https://openalex.org/W2128728535, https://openalex.org/W2804860796, https://openalex.org/W2885195348, https://openalex.org/W2944851425, https://openalex.org/W2128543433, https://openalex.org/W1973965874, https://openalex.org/W2344328023, https://openalex.org/W6847397134, https://openalex.org/W2153233077, https://openalex.org/W2773731871 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 4, 38, 62, 89 |
| abstract_inverted_index.By | 67 |
| abstract_inverted_index.It | 13 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.at | 71 |
| abstract_inverted_index.by | 37 |
| abstract_inverted_index.in | 10, 65, 92 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 24 |
| abstract_inverted_index.on | 57 |
| abstract_inverted_index.to | 77 |
| abstract_inverted_index.CNN | 78 |
| abstract_inverted_index.HOG | 16 |
| abstract_inverted_index.and | 21, 46, 49, 81 |
| abstract_inverted_index.for | 7, 18, 43, 51 |
| abstract_inverted_index.the | 22, 58 |
| abstract_inverted_index.GRUs | 50 |
| abstract_inverted_index.This | 1, 30 |
| abstract_inverted_index.based | 79 |
| abstract_inverted_index.named | 32 |
| abstract_inverted_index.speed | 73 |
| abstract_inverted_index.K-HUKI | 85 |
| abstract_inverted_index.Report | 2 |
| abstract_inverted_index.UCF101 | 59 |
| abstract_inverted_index.frames | 70 |
| abstract_inverted_index.itself | 87 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.robust | 39 |
| abstract_inverted_index.(almost | 74 |
| abstract_inverted_index.3D-CNNs | 42 |
| abstract_inverted_index.5-fold) | 75 |
| abstract_inverted_index.K-HUKI, | 33 |
| abstract_inverted_index.K-means | 28 |
| abstract_inverted_index.dataset | 60 |
| abstract_inverted_index.further | 35 |
| abstract_inverted_index.spatial | 47 |
| abstract_inverted_index.through | 27 |
| abstract_inverted_index.activity | 11 |
| abstract_inverted_index.compared | 76 |
| abstract_inverted_index.features | 17 |
| abstract_inverted_index.handling | 52 |
| abstract_inverted_index.keyframe | 8, 93 |
| abstract_inverted_index.learning | 26 |
| abstract_inverted_index.proposes | 3 |
| abstract_inverted_index.temporal | 45 |
| abstract_inverted_index.Extensive | 55 |
| abstract_inverted_index.accuracy, | 84 |
| abstract_inverted_index.accuracy. | 66 |
| abstract_inverted_index.achieving | 82 |
| abstract_inverted_index.approach, | 31 |
| abstract_inverted_index.capturing | 44 |
| abstract_inverted_index.combining | 41 |
| abstract_inverted_index.empowered | 36 |
| abstract_inverted_index.perpetual | 53 |
| abstract_inverted_index.approach's | 80 |
| abstract_inverted_index.detection. | 94 |
| abstract_inverted_index.evaluation | 56 |
| abstract_inverted_index.integrates | 15 |
| abstract_inverted_index.pioneering | 5 |
| abstract_inverted_index.remarkable | 63 |
| abstract_inverted_index.seamlessly | 14 |
| abstract_inverted_index.action-rich | 69 |
| abstract_inverted_index.advancement | 91 |
| abstract_inverted_index.clustering. | 29 |
| abstract_inverted_index.establishes | 86 |
| abstract_inverted_index.exceptional | 72 |
| abstract_inverted_index.flexibility | 23 |
| abstract_inverted_index.identifying | 68 |
| abstract_inverted_index.improvement | 64 |
| abstract_inverted_index.information | 48 |
| abstract_inverted_index.informative | 19 |
| abstract_inverted_index.architecture | 40 |
| abstract_inverted_index.demonstrates | 61 |
| abstract_inverted_index.unparalleled | 83 |
| abstract_inverted_index.unsupervised | 25 |
| abstract_inverted_index.dependencies. | 54 |
| abstract_inverted_index.groundbreaking | 90 |
| abstract_inverted_index.identification | 9 |
| abstract_inverted_index.representation | 20 |
| abstract_inverted_index.interpretation. | 12 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.14518332 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |