K-LITE: Learning Transferable Visual Models with External Knowledge Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.09222
The new generation of state-of-the-art computer vision systems are trained from natural language supervision, ranging from simple object category names to descriptive captions. This form of supervision ensures high generality and usability of the learned visual models, due to the broad concept coverage achieved via large-scale data collection process. Alternatively, we argue that learning with external knowledge is a promising way which leverages a much more structured source of supervision and offers sample efficiency. We propose K-LITE, a simple strategy to leverage external knowledge for building transferable visual systems: In training, it enriches entities in text with WordNet and Wiktionary knowledge, leading to an efficient and scalable approach to learning image representations that uses knowledge about the visual concepts. In evaluation, the text is also augmented with external knowledge and then used to reference learned visual concepts (or describe new ones) to enable zero-shot and few-shot transfer of the pre-trained models. We study the performance of K-LITE on two important computer vision problems, image classification and object detection, benchmarking on 20 and 13 different existing datasets, respectively. The proposed knowledge-augmented models show significant improvement in transfer learning performance over existing methods. Our code is available at https://github.com/microsoft/klite.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.09222
- https://arxiv.org/pdf/2204.09222
- OA Status
- green
- Cited By
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224232320
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224232320Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.09222Digital Object Identifier
- Title
-
K-LITE: Learning Transferable Visual Models with External KnowledgeWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-20Full publication date if available
- Authors
-
Sheng Shen, Chunyuan Li, Xiaowei Hu, Yujia Xie, Jianwei Yang, Pengchuan Zhang, Anna Rohrbach, Zhe Gan, Lijuan Wang, Lu Yuan, Ce Liu, Kurt Keutzer, Trevor Darrell, Jianfeng GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.09222Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.09222Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.09222Direct OA link when available
- Concepts
-
Computer science, Leverage (statistics), Artificial intelligence, Generality, Usability, Benchmarking, Scalability, Human–computer interaction, Machine learning, Natural language processing, Database, Business, Marketing, Psychology, PsychotherapistTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
44Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 13, 2023: 22, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224232320 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.09222 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.09222 |
| ids.openalex | https://openalex.org/W4224232320 |
| fwci | |
| type | preprint |
| title | K-LITE: Learning Transferable Visual Models with External Knowledge |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9975000023841858 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8467209935188293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6440316438674927 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5428524017333984 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780767217 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5188347101211548 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[3].display_name | Generality |
| concepts[4].id | https://openalex.org/C170130773 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5149863362312317 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q216378 |
| concepts[4].display_name | Usability |
| concepts[5].id | https://openalex.org/C86251818 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5094824433326721 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[5].display_name | Benchmarking |
| concepts[6].id | https://openalex.org/C48044578 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5035294890403748 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[6].display_name | Scalability |
| concepts[7].id | https://openalex.org/C107457646 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41139212250709534 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[7].display_name | Human–computer interaction |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40320101380348206 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.35041725635528564 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14586451649665833 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C144133560 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[11].display_name | Business |
| concepts[12].id | https://openalex.org/C162853370 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[12].display_name | Marketing |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C542102704 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[14].display_name | Psychotherapist |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8467209935188293 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.6440316438674927 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5428524017333984 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/generality |
| keywords[3].score | 0.5188347101211548 |
| keywords[3].display_name | Generality |
| keywords[4].id | https://openalex.org/keywords/usability |
| keywords[4].score | 0.5149863362312317 |
| keywords[4].display_name | Usability |
| keywords[5].id | https://openalex.org/keywords/benchmarking |
| keywords[5].score | 0.5094824433326721 |
| keywords[5].display_name | Benchmarking |
| keywords[6].id | https://openalex.org/keywords/scalability |
| keywords[6].score | 0.5035294890403748 |
| keywords[6].display_name | Scalability |
| keywords[7].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[7].score | 0.41139212250709534 |
| keywords[7].display_name | Human–computer interaction |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.40320101380348206 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.35041725635528564 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.14586451649665833 |
| keywords[10].display_name | Database |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.09222 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.09222 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.09222 |
| locations[1].id | doi:10.48550/arxiv.2204.09222 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.09222 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100784815 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8773-6365 |
| authorships[0].author.display_name | Sheng Shen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shen, Sheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5107893340 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chunyuan Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Chunyuan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027851405 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5708-7018 |
| authorships[2].author.display_name | Xiaowei Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hu, Xiaowei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101474984 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2668-8272 |
| authorships[3].author.display_name | Yujia Xie |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xie, Yujia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100632859 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2022-6002 |
| authorships[4].author.display_name | Jianwei Yang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yang, Jianwei |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5059735251 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1155-9507 |
| authorships[5].author.display_name | Pengchuan Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Pengchuan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037747070 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1161-6006 |
| authorships[6].author.display_name | Anna Rohrbach |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Rohrbach, Anna |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5066666034 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Zhe Gan |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gan, Zhe |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100436501 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2517-2728 |
| authorships[8].author.display_name | Lijuan Wang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wang, Lijuan |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100390820 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7879-0389 |
| authorships[9].author.display_name | Lu Yuan |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Yuan, Lu |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5101758608 |
| authorships[10].author.orcid | https://orcid.org/0009-0002-3686-9237 |
| authorships[10].author.display_name | Ce Liu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Liu, Ce |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5047285420 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3868-8501 |
| authorships[11].author.display_name | Kurt Keutzer |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Keutzer, Kurt |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5029105520 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-5453-8533 |
| authorships[12].author.display_name | Trevor Darrell |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Darrell, Trevor |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5047233371 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6371-505X |
| authorships[13].author.display_name | Jianfeng Gao |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Gao, Jianfeng |
| authorships[13].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.09222 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | K-LITE: Learning Transferable Visual Models with External Knowledge |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W1993948687, https://openalex.org/W2045049461, https://openalex.org/W2000169967 |
| cited_by_count | 44 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 22 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.09222 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.09222 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.09222 |
| primary_location.id | pmh:oai:arXiv.org:2204.09222 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.09222 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.09222 |
| publication_date | 2022-04-20 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 58, 63, 77 |
| abstract_inverted_index.13 | 172 |
| abstract_inverted_index.20 | 170 |
| abstract_inverted_index.In | 89, 119 |
| abstract_inverted_index.We | 74, 151 |
| abstract_inverted_index.an | 103 |
| abstract_inverted_index.at | 195 |
| abstract_inverted_index.in | 94, 184 |
| abstract_inverted_index.is | 57, 123, 193 |
| abstract_inverted_index.it | 91 |
| abstract_inverted_index.of | 3, 25, 32, 68, 147, 155 |
| abstract_inverted_index.on | 157, 169 |
| abstract_inverted_index.to | 20, 38, 80, 102, 108, 132, 141 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.(or | 137 |
| abstract_inverted_index.Our | 191 |
| abstract_inverted_index.The | 0, 177 |
| abstract_inverted_index.and | 30, 70, 98, 105, 129, 144, 165, 171 |
| abstract_inverted_index.are | 8 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 84 |
| abstract_inverted_index.new | 1, 139 |
| abstract_inverted_index.the | 33, 39, 116, 121, 148, 153 |
| abstract_inverted_index.two | 158 |
| abstract_inverted_index.via | 44 |
| abstract_inverted_index.way | 60 |
| abstract_inverted_index.This | 23 |
| abstract_inverted_index.also | 124 |
| abstract_inverted_index.code | 192 |
| abstract_inverted_index.data | 46 |
| abstract_inverted_index.form | 24 |
| abstract_inverted_index.from | 10, 15 |
| abstract_inverted_index.high | 28 |
| abstract_inverted_index.more | 65 |
| abstract_inverted_index.much | 64 |
| abstract_inverted_index.over | 188 |
| abstract_inverted_index.show | 181 |
| abstract_inverted_index.text | 95, 122 |
| abstract_inverted_index.that | 52, 112 |
| abstract_inverted_index.then | 130 |
| abstract_inverted_index.used | 131 |
| abstract_inverted_index.uses | 113 |
| abstract_inverted_index.with | 54, 96, 126 |
| abstract_inverted_index.about | 115 |
| abstract_inverted_index.argue | 51 |
| abstract_inverted_index.broad | 40 |
| abstract_inverted_index.image | 110, 163 |
| abstract_inverted_index.names | 19 |
| abstract_inverted_index.ones) | 140 |
| abstract_inverted_index.study | 152 |
| abstract_inverted_index.which | 61 |
| abstract_inverted_index.K-LITE | 156 |
| abstract_inverted_index.enable | 142 |
| abstract_inverted_index.models | 180 |
| abstract_inverted_index.object | 17, 166 |
| abstract_inverted_index.offers | 71 |
| abstract_inverted_index.sample | 72 |
| abstract_inverted_index.simple | 16, 78 |
| abstract_inverted_index.source | 67 |
| abstract_inverted_index.vision | 6, 161 |
| abstract_inverted_index.visual | 35, 87, 117, 135 |
| abstract_inverted_index.K-LITE, | 76 |
| abstract_inverted_index.WordNet | 97 |
| abstract_inverted_index.concept | 41 |
| abstract_inverted_index.ensures | 27 |
| abstract_inverted_index.leading | 101 |
| abstract_inverted_index.learned | 34, 134 |
| abstract_inverted_index.models, | 36 |
| abstract_inverted_index.models. | 150 |
| abstract_inverted_index.natural | 11 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.ranging | 14 |
| abstract_inverted_index.systems | 7 |
| abstract_inverted_index.trained | 9 |
| abstract_inverted_index.achieved | 43 |
| abstract_inverted_index.approach | 107 |
| abstract_inverted_index.building | 85 |
| abstract_inverted_index.category | 18 |
| abstract_inverted_index.computer | 5, 160 |
| abstract_inverted_index.concepts | 136 |
| abstract_inverted_index.coverage | 42 |
| abstract_inverted_index.describe | 138 |
| abstract_inverted_index.enriches | 92 |
| abstract_inverted_index.entities | 93 |
| abstract_inverted_index.existing | 174, 189 |
| abstract_inverted_index.external | 55, 82, 127 |
| abstract_inverted_index.few-shot | 145 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.learning | 53, 109, 186 |
| abstract_inverted_index.leverage | 81 |
| abstract_inverted_index.methods. | 190 |
| abstract_inverted_index.process. | 48 |
| abstract_inverted_index.proposed | 178 |
| abstract_inverted_index.scalable | 106 |
| abstract_inverted_index.strategy | 79 |
| abstract_inverted_index.systems: | 88 |
| abstract_inverted_index.transfer | 146, 185 |
| abstract_inverted_index.augmented | 125 |
| abstract_inverted_index.available | 194 |
| abstract_inverted_index.captions. | 22 |
| abstract_inverted_index.concepts. | 118 |
| abstract_inverted_index.datasets, | 175 |
| abstract_inverted_index.different | 173 |
| abstract_inverted_index.efficient | 104 |
| abstract_inverted_index.important | 159 |
| abstract_inverted_index.knowledge | 56, 83, 114, 128 |
| abstract_inverted_index.leverages | 62 |
| abstract_inverted_index.problems, | 162 |
| abstract_inverted_index.promising | 59 |
| abstract_inverted_index.reference | 133 |
| abstract_inverted_index.training, | 90 |
| abstract_inverted_index.usability | 31 |
| abstract_inverted_index.zero-shot | 143 |
| abstract_inverted_index.Wiktionary | 99 |
| abstract_inverted_index.collection | 47 |
| abstract_inverted_index.detection, | 167 |
| abstract_inverted_index.generality | 29 |
| abstract_inverted_index.generation | 2 |
| abstract_inverted_index.knowledge, | 100 |
| abstract_inverted_index.structured | 66 |
| abstract_inverted_index.descriptive | 21 |
| abstract_inverted_index.efficiency. | 73 |
| abstract_inverted_index.evaluation, | 120 |
| abstract_inverted_index.improvement | 183 |
| abstract_inverted_index.large-scale | 45 |
| abstract_inverted_index.performance | 154, 187 |
| abstract_inverted_index.pre-trained | 149 |
| abstract_inverted_index.significant | 182 |
| abstract_inverted_index.supervision | 26, 69 |
| abstract_inverted_index.benchmarking | 168 |
| abstract_inverted_index.supervision, | 13 |
| abstract_inverted_index.transferable | 86 |
| abstract_inverted_index.respectively. | 176 |
| abstract_inverted_index.Alternatively, | 49 |
| abstract_inverted_index.classification | 164 |
| abstract_inverted_index.representations | 111 |
| abstract_inverted_index.state-of-the-art | 4 |
| abstract_inverted_index.knowledge-augmented | 179 |
| abstract_inverted_index.https://github.com/microsoft/klite. | 196 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |