Kalman and UFIR state estimation with coloured measurement noise using backward Euler method Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1049/iet-spr.2019.0166
Under coloured noise, known modifications of the Kalman filter (KF) exist only for discrete‐time state‐space models produced by the forward Euler (FE) method, which fits with feedback control. In this study, the authors modify the KF and unbiased finite impulse response (UFIR) filter using the backward Euler (BE) method for models with coloured measurement noise (CMN), which better fits systems without feedback. The FE‐ and BE‐based models differ by time indexes in the system input and noise that is essential for time‐varying and Markov jump systems. Employing measurement differencing, two KF algorithms and a unique UFIR algorithm are derived for time‐correlated and de‐correlated noise. An equivalence of the KF algorithms is proved analytically and confirmed by simulations. Numerical examples are given for target tracking and experimental verification is provided for visual object tracking. The high efficiency of the designed algorithms in removing CMN is demonstrated experimentally.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/iet-spr.2019.0166
- https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166
- OA Status
- bronze
- Cited By
- 45
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2981245529
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2981245529Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/iet-spr.2019.0166Digital Object Identifier
- Title
-
Kalman and UFIR state estimation with coloured measurement noise using backward Euler methodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-19Full publication date if available
- Authors
-
Yuriy S. Shmaliy, Shunyi Zhao, Choon Ki AhnList of authors in order
- Landing page
-
https://doi.org/10.1049/iet-spr.2019.0166Publisher landing page
- PDF URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166Direct OA link when available
- Concepts
-
Kalman filter, Noise (video), Computer science, Control theory (sociology), Algorithm, Euler method, State space, Tracking (education), Euler's formula, Impulse (physics), Mathematics, Artificial intelligence, Statistics, Control (management), Mathematical analysis, Quantum mechanics, Psychology, Pedagogy, Physics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
45Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 8, 2023: 11, 2022: 9, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2981245529 |
|---|---|
| doi | https://doi.org/10.1049/iet-spr.2019.0166 |
| ids.doi | https://doi.org/10.1049/iet-spr.2019.0166 |
| ids.mag | 2981245529 |
| ids.openalex | https://openalex.org/W2981245529 |
| fwci | 3.07235491 |
| type | article |
| title | Kalman and UFIR state estimation with coloured measurement noise using backward Euler method |
| biblio.issue | 2 |
| biblio.volume | 14 |
| biblio.last_page | 71 |
| biblio.first_page | 64 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T10331 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9900000095367432 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Surveillance and Tracking Methods |
| topics[2].id | https://openalex.org/T11233 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Adaptive Filtering Techniques |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C157286648 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7245833873748779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[0].display_name | Kalman filter |
| concepts[1].id | https://openalex.org/C99498987 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5863553881645203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[1].display_name | Noise (video) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.557815670967102 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C47446073 |
| concepts[3].level | 3 |
| concepts[3].score | 0.542387068271637 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[3].display_name | Control theory (sociology) |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5071053504943848 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C75380026 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5047742128372192 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q868454 |
| concepts[5].display_name | Euler method |
| concepts[6].id | https://openalex.org/C72434380 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4716476798057556 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q230930 |
| concepts[6].display_name | State space |
| concepts[7].id | https://openalex.org/C2775936607 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45015260577201843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[7].display_name | Tracking (education) |
| concepts[8].id | https://openalex.org/C62884695 |
| concepts[8].level | 2 |
| concepts[8].score | 0.443093478679657 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q184871 |
| concepts[8].display_name | Euler's formula |
| concepts[9].id | https://openalex.org/C70836080 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4116547107696533 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837940 |
| concepts[9].display_name | Impulse (physics) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.36672353744506836 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15888702869415283 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09042149782180786 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C2775924081 |
| concepts[13].level | 2 |
| concepts[13].score | 0.08163577318191528 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[13].display_name | Control (management) |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0760456919670105 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C19417346 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[17].display_name | Pedagogy |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/kalman-filter |
| keywords[0].score | 0.7245833873748779 |
| keywords[0].display_name | Kalman filter |
| keywords[1].id | https://openalex.org/keywords/noise |
| keywords[1].score | 0.5863553881645203 |
| keywords[1].display_name | Noise (video) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.557815670967102 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/control-theory |
| keywords[3].score | 0.542387068271637 |
| keywords[3].display_name | Control theory (sociology) |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5071053504943848 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/euler-method |
| keywords[5].score | 0.5047742128372192 |
| keywords[5].display_name | Euler method |
| keywords[6].id | https://openalex.org/keywords/state-space |
| keywords[6].score | 0.4716476798057556 |
| keywords[6].display_name | State space |
| keywords[7].id | https://openalex.org/keywords/tracking |
| keywords[7].score | 0.45015260577201843 |
| keywords[7].display_name | Tracking (education) |
| keywords[8].id | https://openalex.org/keywords/eulers-formula |
| keywords[8].score | 0.443093478679657 |
| keywords[8].display_name | Euler's formula |
| keywords[9].id | https://openalex.org/keywords/impulse |
| keywords[9].score | 0.4116547107696533 |
| keywords[9].display_name | Impulse (physics) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.36672353744506836 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.15888702869415283 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.09042149782180786 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/control |
| keywords[13].score | 0.08163577318191528 |
| keywords[13].display_name | Control (management) |
| keywords[14].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[14].score | 0.0760456919670105 |
| keywords[14].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1049/iet-spr.2019.0166 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S30889260 |
| locations[0].source.issn | 1751-9675, 1751-9683 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1751-9675 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Signal Processing |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Signal Processing |
| locations[0].landing_page_url | https://doi.org/10.1049/iet-spr.2019.0166 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5058205797 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6848-453X |
| authorships[0].author.display_name | Yuriy S. Shmaliy |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129858807 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics Engineering, Universidad de Guanajuato, Salamanca, 36885 Gto, Mexico |
| authorships[0].institutions[0].id | https://openalex.org/I129858807 |
| authorships[0].institutions[0].ror | https://ror.org/058cjye32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129858807 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad de Guanajuato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuriy S. Shmaliy |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electronics Engineering, Universidad de Guanajuato, Salamanca, 36885 Gto, Mexico |
| authorships[1].author.id | https://openalex.org/A5023417619 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5363-8305 |
| authorships[1].author.display_name | Shunyi Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111599522 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I111599522 |
| authorships[1].institutions[0].ror | https://ror.org/04mkzax54 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I111599522 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangnan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shunyi Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5084993350 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0993-9658 |
| authorships[2].author.display_name | Choon Ki Ahn |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I197347611 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electrical Engineering, Korea University, Seoul, 136-701 Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I197347611 |
| authorships[2].institutions[0].ror | https://ror.org/047dqcg40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I197347611 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Korea University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Choon K. Ahn |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electrical Engineering, Korea University, Seoul, 136-701 Republic of Korea |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Kalman and UFIR state estimation with coloured measurement noise using backward Euler method |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W2189596786, https://openalex.org/W4382053489, https://openalex.org/W2089955609, https://openalex.org/W2039299714, https://openalex.org/W2466040413, https://openalex.org/W4383710307, https://openalex.org/W4307700932, https://openalex.org/W2290376096, https://openalex.org/W2887130266, https://openalex.org/W3000028401 |
| cited_by_count | 45 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/iet-spr.2019.0166 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S30889260 |
| best_oa_location.source.issn | 1751-9675, 1751-9683 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1751-9675 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Signal Processing |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Signal Processing |
| best_oa_location.landing_page_url | https://doi.org/10.1049/iet-spr.2019.0166 |
| primary_location.id | doi:10.1049/iet-spr.2019.0166 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S30889260 |
| primary_location.source.issn | 1751-9675, 1751-9683 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1751-9675 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Signal Processing |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-spr.2019.0166 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Signal Processing |
| primary_location.landing_page_url | https://doi.org/10.1049/iet-spr.2019.0166 |
| publication_date | 2019-10-19 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W4256197952, https://openalex.org/W1915785815, https://openalex.org/W1552377164, https://openalex.org/W2342186580, https://openalex.org/W2742001314, https://openalex.org/W2171612575, https://openalex.org/W2000098639, https://openalex.org/W2055106264, https://openalex.org/W2790374560, https://openalex.org/W2084002884, https://openalex.org/W2052684110, https://openalex.org/W1982277911, https://openalex.org/W2097576710, https://openalex.org/W2003641974, https://openalex.org/W1590346087, https://openalex.org/W2746291398, https://openalex.org/W2560597209, https://openalex.org/W1974811706, https://openalex.org/W1539644400, https://openalex.org/W2791884886, https://openalex.org/W2624993412, https://openalex.org/W2782468321, https://openalex.org/W2788316250, https://openalex.org/W2911671670, https://openalex.org/W1531532259, https://openalex.org/W2034381129, https://openalex.org/W2034543950, https://openalex.org/W4252119169, https://openalex.org/W2139251171, https://openalex.org/W2102047877, https://openalex.org/W2755153992, https://openalex.org/W2802121951, https://openalex.org/W1998914394, https://openalex.org/W2089961441, https://openalex.org/W2143033216, https://openalex.org/W1994311899, https://openalex.org/W2110121279, https://openalex.org/W2109685219, https://openalex.org/W2016166491, https://openalex.org/W1500564636, https://openalex.org/W4231757037, https://openalex.org/W2999431506 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 93 |
| abstract_inverted_index.An | 104 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.KF | 35, 90, 108 |
| abstract_inverted_index.by | 17, 68, 115 |
| abstract_inverted_index.in | 71, 140 |
| abstract_inverted_index.is | 78, 110, 127, 143 |
| abstract_inverted_index.of | 5, 106, 136 |
| abstract_inverted_index.CMN | 142 |
| abstract_inverted_index.The | 62, 133 |
| abstract_inverted_index.and | 36, 64, 75, 82, 92, 101, 113, 124 |
| abstract_inverted_index.are | 97, 119 |
| abstract_inverted_index.for | 12, 49, 80, 99, 121, 129 |
| abstract_inverted_index.the | 6, 18, 31, 34, 44, 72, 107, 137 |
| abstract_inverted_index.two | 89 |
| abstract_inverted_index.(BE) | 47 |
| abstract_inverted_index.(FE) | 21 |
| abstract_inverted_index.(KF) | 9 |
| abstract_inverted_index.UFIR | 95 |
| abstract_inverted_index.fits | 24, 58 |
| abstract_inverted_index.high | 134 |
| abstract_inverted_index.jump | 84 |
| abstract_inverted_index.only | 11 |
| abstract_inverted_index.that | 77 |
| abstract_inverted_index.this | 29 |
| abstract_inverted_index.time | 69 |
| abstract_inverted_index.with | 25, 51 |
| abstract_inverted_index.Euler | 20, 46 |
| abstract_inverted_index.FE‐ | 63 |
| abstract_inverted_index.Under | 0 |
| abstract_inverted_index.exist | 10 |
| abstract_inverted_index.given | 120 |
| abstract_inverted_index.input | 74 |
| abstract_inverted_index.known | 3 |
| abstract_inverted_index.noise | 54, 76 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.which | 23, 56 |
| abstract_inverted_index.(CMN), | 55 |
| abstract_inverted_index.(UFIR) | 41 |
| abstract_inverted_index.Kalman | 7 |
| abstract_inverted_index.Markov | 83 |
| abstract_inverted_index.better | 57 |
| abstract_inverted_index.differ | 67 |
| abstract_inverted_index.filter | 8, 42 |
| abstract_inverted_index.finite | 38 |
| abstract_inverted_index.method | 48 |
| abstract_inverted_index.models | 15, 50, 66 |
| abstract_inverted_index.modify | 33 |
| abstract_inverted_index.noise, | 2 |
| abstract_inverted_index.noise. | 103 |
| abstract_inverted_index.object | 131 |
| abstract_inverted_index.proved | 111 |
| abstract_inverted_index.study, | 30 |
| abstract_inverted_index.system | 73 |
| abstract_inverted_index.target | 122 |
| abstract_inverted_index.unique | 94 |
| abstract_inverted_index.visual | 130 |
| abstract_inverted_index.authors | 32 |
| abstract_inverted_index.derived | 98 |
| abstract_inverted_index.forward | 19 |
| abstract_inverted_index.impulse | 39 |
| abstract_inverted_index.indexes | 70 |
| abstract_inverted_index.method, | 22 |
| abstract_inverted_index.systems | 59 |
| abstract_inverted_index.without | 60 |
| abstract_inverted_index.backward | 45 |
| abstract_inverted_index.coloured | 1, 52 |
| abstract_inverted_index.control. | 27 |
| abstract_inverted_index.designed | 138 |
| abstract_inverted_index.examples | 118 |
| abstract_inverted_index.feedback | 26 |
| abstract_inverted_index.produced | 16 |
| abstract_inverted_index.provided | 128 |
| abstract_inverted_index.removing | 141 |
| abstract_inverted_index.response | 40 |
| abstract_inverted_index.systems. | 85 |
| abstract_inverted_index.tracking | 123 |
| abstract_inverted_index.unbiased | 37 |
| abstract_inverted_index.Employing | 86 |
| abstract_inverted_index.Numerical | 117 |
| abstract_inverted_index.algorithm | 96 |
| abstract_inverted_index.confirmed | 114 |
| abstract_inverted_index.essential | 79 |
| abstract_inverted_index.feedback. | 61 |
| abstract_inverted_index.tracking. | 132 |
| abstract_inverted_index.BE‐based | 65 |
| abstract_inverted_index.algorithms | 91, 109, 139 |
| abstract_inverted_index.efficiency | 135 |
| abstract_inverted_index.equivalence | 105 |
| abstract_inverted_index.measurement | 53, 87 |
| abstract_inverted_index.analytically | 112 |
| abstract_inverted_index.demonstrated | 144 |
| abstract_inverted_index.experimental | 125 |
| abstract_inverted_index.simulations. | 116 |
| abstract_inverted_index.verification | 126 |
| abstract_inverted_index.differencing, | 88 |
| abstract_inverted_index.modifications | 4 |
| abstract_inverted_index.state‐space | 14 |
| abstract_inverted_index.time‐varying | 81 |
| abstract_inverted_index.de‐correlated | 102 |
| abstract_inverted_index.discrete‐time | 13 |
| abstract_inverted_index.experimentally. | 145 |
| abstract_inverted_index.time‐correlated | 100 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5058205797 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I129858807 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.41999998688697815 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.92962393 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |