KappaMask: AI-Based Cloudmask Processor for Sentinel-2 Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13204100
The Copernicus Sentinel-2 mission operated by the European Space Agency (ESA) provides comprehensive and continuous multi-spectral observations of all the Earth’s land surface since mid-2015. Clouds and cloud shadows significantly decrease the usability of optical satellite data, especially in agricultural applications; therefore, an accurate and reliable cloud mask is mandatory for effective EO optical data exploitation. During the last few years, image segmentation techniques have developed rapidly with the exploitation of neural network capabilities. With this perspective, the KappaMask processor using U-Net architecture was developed with the ability to generate a classification mask over northern latitudes into the following classes: clear, cloud shadow, semi-transparent cloud (thin clouds), cloud and invalid. For training, a Sentinel-2 dataset covering the Northern European terrestrial area was labelled. KappaMask provides a 10 m classification mask for Sentinel-2 Level-2A (L2A) and Level-1C (L1C) products. The total dice coefficient on the test dataset, which was not seen by the model at any stage, was 80% for KappaMask L2A and 76% for KappaMask L1C for clear, cloud shadow, semi-transparent and cloud classes. A comparison with rule-based cloud mask methods was then performed on the same test dataset, where Sen2Cor reached 59% dice coefficient for clear, cloud shadow, semi-transparent and cloud classes, Fmask reached 61% for clear, cloud shadow and cloud classes and Maja reached 51% for clear and cloud classes. The closest machine learning open-source cloud classification mask, S2cloudless, had a 63% dice coefficient providing only cloud and clear classes, while KappaMask L2A, with a more complex classification schema, outperformed S2cloudless by 17%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13204100
- https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896
- OA Status
- gold
- Cited By
- 37
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3207866056
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3207866056Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13204100Digital Object Identifier
- Title
-
KappaMask: AI-Based Cloudmask Processor for Sentinel-2Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-10-13Full publication date if available
- Authors
-
Marharyta Domnich, Indrek Sünter, Heido Trofimov, Olga Wold, Fariha Harun, Anton Kostiukhin, Mihkel Järveoja, Mihkel Veske, Tanel Tamm, Kaupo Voormansik, Aire Olesk, Valentina Boccia, Nicolas Longépé, Enrico CadauList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13204100Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896Direct OA link when available
- Concepts
-
Cloud computing, Computer science, Remote sensing, Cloud top, Sørensen–Dice coefficient, Artificial intelligence, Segmentation, Image segmentation, Geology, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
37Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 15, 2023: 8, 2022: 6Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3207866056 |
|---|---|
| doi | https://doi.org/10.3390/rs13204100 |
| ids.doi | https://doi.org/10.3390/rs13204100 |
| ids.mag | 3207866056 |
| ids.openalex | https://openalex.org/W3207866056 |
| fwci | 5.38584467 |
| type | article |
| title | KappaMask: AI-Based Cloudmask Processor for Sentinel-2 |
| awards[0].id | https://openalex.org/G7028962694 |
| awards[0].funder_id | https://openalex.org/F4320318240 |
| awards[0].display_name | |
| awards[0].funder_award_id | 4000132124/20/I-DT |
| awards[0].funder_display_name | European Space Agency |
| biblio.issue | 20 |
| biblio.volume | 13 |
| biblio.last_page | 4100 |
| biblio.first_page | 4100 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| funders[0].id | https://openalex.org/F4320318240 |
| funders[0].ror | https://ror.org/03wd9za21 |
| funders[0].display_name | European Space Agency |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C79974875 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8514792323112488 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[0].display_name | Cloud computing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6166384816169739 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5214147567749023 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C199194280 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5011413097381592 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3268898 |
| concepts[3].display_name | Cloud top |
| concepts[4].id | https://openalex.org/C163892561 |
| concepts[4].level | 4 |
| concepts[4].score | 0.47900766134262085 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2613728 |
| concepts[4].display_name | Sørensen–Dice coefficient |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3681403398513794 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C89600930 |
| concepts[6].level | 2 |
| concepts[6].score | 0.35097992420196533 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[6].display_name | Segmentation |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.24163705110549927 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.164700448513031 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C111919701 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0788794457912445 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[9].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/cloud-computing |
| keywords[0].score | 0.8514792323112488 |
| keywords[0].display_name | Cloud computing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6166384816169739 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.5214147567749023 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/cloud-top |
| keywords[3].score | 0.5011413097381592 |
| keywords[3].display_name | Cloud top |
| keywords[4].id | https://openalex.org/keywords/sørensen–dice-coefficient |
| keywords[4].score | 0.47900766134262085 |
| keywords[4].display_name | Sørensen–Dice coefficient |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3681403398513794 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/segmentation |
| keywords[6].score | 0.35097992420196533 |
| keywords[6].display_name | Segmentation |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.24163705110549927 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.164700448513031 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/operating-system |
| keywords[9].score | 0.0788794457912445 |
| keywords[9].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.3390/rs13204100 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13204100 |
| locations[1].id | pmh:oai:doaj.org/article:7e337f68f9a94f7e958241e848dda600 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 13, Iss 20, p 4100 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/7e337f68f9a94f7e958241e848dda600 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/13/20/4100/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 13; Issue 20; Pages: 4100 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs13204100 |
| locations[3].id | pmh:oai:zenodo.org:148010 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400562 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[3].source.host_organization | https://openalex.org/I67311998 |
| locations[3].source.host_organization_name | European Organization for Nuclear Research |
| locations[3].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.openaccessrepository.it/record/148010 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5007012338 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5414-6089 |
| authorships[0].author.display_name | Marharyta Domnich |
| authorships[0].countries | EE |
| authorships[0].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I56085075 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Computer Science, University of Tartu Estonia, 51009 Tartu, Estonia |
| authorships[0].institutions[0].id | https://openalex.org/I56085075 |
| authorships[0].institutions[0].ror | https://ror.org/03z77qz90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56085075 |
| authorships[0].institutions[0].country_code | EE |
| authorships[0].institutions[0].display_name | University of Tartu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Marharyta Domnich |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Computer Science, University of Tartu Estonia, 51009 Tartu, Estonia, KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[1].author.id | https://openalex.org/A5088503804 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1092-5480 |
| authorships[1].author.display_name | Indrek Sünter |
| authorships[1].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Indrek Sünter |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[2].author.id | https://openalex.org/A5051400903 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3877-8101 |
| authorships[2].author.display_name | Heido Trofimov |
| authorships[2].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heido Trofimov |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[3].author.id | https://openalex.org/A5010655869 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Olga Wold |
| authorships[3].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Olga Wold |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[4].author.id | https://openalex.org/A5036807821 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Fariha Harun |
| authorships[4].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fariha Harun |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[5].author.id | https://openalex.org/A5072348214 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Anton Kostiukhin |
| authorships[5].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Anton Kostiukhin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[6].author.id | https://openalex.org/A5021370855 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Mihkel Järveoja |
| authorships[6].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Mihkel Järveoja |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[7].author.id | https://openalex.org/A5026684504 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2367-9215 |
| authorships[7].author.display_name | Mihkel Veske |
| authorships[7].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Mihkel Veske |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[8].author.id | https://openalex.org/A5022953986 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Tanel Tamm |
| authorships[8].affiliations[0].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Tanel Tamm |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[9].author.id | https://openalex.org/A5069977476 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Kaupo Voormansik |
| authorships[9].countries | EE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[9].affiliations[0].raw_affiliation_string | Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[9].affiliations[1].raw_affiliation_string | KappaZeta Ltd., 51007 Tartu, Estonia |
| authorships[9].institutions[0].id | https://openalex.org/I2802841028 |
| authorships[9].institutions[0].ror | https://ror.org/04mc23283 |
| authorships[9].institutions[0].type | archive |
| authorships[9].institutions[0].lineage | https://openalex.org/I172656520, https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[9].institutions[0].country_code | EE |
| authorships[9].institutions[0].display_name | Tartu Observatory |
| authorships[9].institutions[1].id | https://openalex.org/I56085075 |
| authorships[9].institutions[1].ror | https://ror.org/03z77qz90 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I56085075 |
| authorships[9].institutions[1].country_code | EE |
| authorships[9].institutions[1].display_name | University of Tartu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Kaupo Voormansik |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | KappaZeta Ltd., 51007 Tartu, Estonia, Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[10].author.id | https://openalex.org/A5008247515 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0807-3082 |
| authorships[10].author.display_name | Aire Olesk |
| authorships[10].countries | EE |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[10].affiliations[0].raw_affiliation_string | Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[10].institutions[0].id | https://openalex.org/I2802841028 |
| authorships[10].institutions[0].ror | https://ror.org/04mc23283 |
| authorships[10].institutions[0].type | archive |
| authorships[10].institutions[0].lineage | https://openalex.org/I172656520, https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[10].institutions[0].country_code | EE |
| authorships[10].institutions[0].display_name | Tartu Observatory |
| authorships[10].institutions[1].id | https://openalex.org/I56085075 |
| authorships[10].institutions[1].ror | https://ror.org/03z77qz90 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I56085075 |
| authorships[10].institutions[1].country_code | EE |
| authorships[10].institutions[1].display_name | University of Tartu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Aire Olesk |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[11].author.id | https://openalex.org/A5090451761 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-8416-5739 |
| authorships[11].author.display_name | Valentina Boccia |
| authorships[11].countries | IT |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I4210165017 |
| authorships[11].affiliations[0].raw_affiliation_string | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| authorships[11].institutions[0].id | https://openalex.org/I4210165017 |
| authorships[11].institutions[0].ror | https://ror.org/05vt9rv16 |
| authorships[11].institutions[0].type | facility |
| authorships[11].institutions[0].lineage | https://openalex.org/I2801994115, https://openalex.org/I4210165017 |
| authorships[11].institutions[0].country_code | IT |
| authorships[11].institutions[0].display_name | European Space Research Institute |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Valentina Boccia |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| authorships[12].author.id | https://openalex.org/A5009020295 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-6832-3274 |
| authorships[12].author.display_name | Nicolas Longépé |
| authorships[12].countries | IT |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210165017 |
| authorships[12].affiliations[0].raw_affiliation_string | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| authorships[12].institutions[0].id | https://openalex.org/I4210165017 |
| authorships[12].institutions[0].ror | https://ror.org/05vt9rv16 |
| authorships[12].institutions[0].type | facility |
| authorships[12].institutions[0].lineage | https://openalex.org/I2801994115, https://openalex.org/I4210165017 |
| authorships[12].institutions[0].country_code | IT |
| authorships[12].institutions[0].display_name | European Space Research Institute |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Nicolas Longepe |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| authorships[13].author.id | https://openalex.org/A5065459654 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-8282-844X |
| authorships[13].author.display_name | Enrico Cadau |
| authorships[13].countries | IT |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I4210165017 |
| authorships[13].affiliations[0].raw_affiliation_string | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| authorships[13].institutions[0].id | https://openalex.org/I4210165017 |
| authorships[13].institutions[0].ror | https://ror.org/05vt9rv16 |
| authorships[13].institutions[0].type | facility |
| authorships[13].institutions[0].lineage | https://openalex.org/I2801994115, https://openalex.org/I4210165017 |
| authorships[13].institutions[0].country_code | IT |
| authorships[13].institutions[0].display_name | European Space Research Institute |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Enrico Giuseppe Cadau |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | European Space Agency, ESA-ESRIN, Largo Galileo Galilei, 1, 00044 Frascati, RM, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-10-25T00:00:00 |
| display_name | KappaMask: AI-Based Cloudmask Processor for Sentinel-2 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W3197954266, https://openalex.org/W4389009345, https://openalex.org/W3047746737, https://openalex.org/W3021454079, https://openalex.org/W4287691568, https://openalex.org/W4220718606, https://openalex.org/W2085143385, https://openalex.org/W2005489729, https://openalex.org/W3090294949, https://openalex.org/W4403080737 |
| cited_by_count | 37 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 15 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/rs13204100 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13204100 |
| primary_location.id | doi:10.3390/rs13204100 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/20/4100/pdf?version=1634200896 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13204100 |
| publication_date | 2021-10-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2597944323, https://openalex.org/W2950314938, https://openalex.org/W2900733456, https://openalex.org/W2945778316, https://openalex.org/W2946072066, https://openalex.org/W2605847660, https://openalex.org/W2963881378, https://openalex.org/W2910101086, https://openalex.org/W2810069315, https://openalex.org/W2150045166, https://openalex.org/W2916589414, https://openalex.org/W3210301683, https://openalex.org/W3153500217, https://openalex.org/W2992172495, https://openalex.org/W3135694539, https://openalex.org/W6803301848, https://openalex.org/W4393622496, https://openalex.org/W1901129140, https://openalex.org/W6631190155, https://openalex.org/W2734349601, https://openalex.org/W6766846328, https://openalex.org/W2996290406, https://openalex.org/W2617242334, https://openalex.org/W2969476445 |
| referenced_works_count | 24 |
| abstract_inverted_index.A | 174 |
| abstract_inverted_index.a | 90, 112, 125, 232, 246 |
| abstract_inverted_index.m | 127 |
| abstract_inverted_index.10 | 126 |
| abstract_inverted_index.EO | 52 |
| abstract_inverted_index.an | 42 |
| abstract_inverted_index.at | 153 |
| abstract_inverted_index.by | 5, 150, 253 |
| abstract_inverted_index.in | 38 |
| abstract_inverted_index.is | 48 |
| abstract_inverted_index.of | 17, 33, 70 |
| abstract_inverted_index.on | 142, 184 |
| abstract_inverted_index.to | 88 |
| abstract_inverted_index.51% | 216 |
| abstract_inverted_index.59% | 192 |
| abstract_inverted_index.61% | 205 |
| abstract_inverted_index.63% | 233 |
| abstract_inverted_index.76% | 162 |
| abstract_inverted_index.80% | 157 |
| abstract_inverted_index.For | 110 |
| abstract_inverted_index.L1C | 165 |
| abstract_inverted_index.L2A | 160 |
| abstract_inverted_index.The | 0, 138, 222 |
| abstract_inverted_index.all | 18 |
| abstract_inverted_index.and | 13, 26, 44, 108, 134, 161, 171, 200, 210, 213, 219, 239 |
| abstract_inverted_index.any | 154 |
| abstract_inverted_index.few | 59 |
| abstract_inverted_index.for | 50, 130, 158, 163, 166, 195, 206, 217 |
| abstract_inverted_index.had | 231 |
| abstract_inverted_index.not | 148 |
| abstract_inverted_index.the | 6, 19, 31, 57, 68, 77, 86, 97, 116, 143, 151, 185 |
| abstract_inverted_index.was | 83, 121, 147, 156, 181 |
| abstract_inverted_index.17%. | 254 |
| abstract_inverted_index.L2A, | 244 |
| abstract_inverted_index.Maja | 214 |
| abstract_inverted_index.With | 74 |
| abstract_inverted_index.area | 120 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.dice | 140, 193, 234 |
| abstract_inverted_index.have | 64 |
| abstract_inverted_index.into | 96 |
| abstract_inverted_index.land | 21 |
| abstract_inverted_index.last | 58 |
| abstract_inverted_index.mask | 47, 92, 129, 179 |
| abstract_inverted_index.more | 247 |
| abstract_inverted_index.only | 237 |
| abstract_inverted_index.over | 93 |
| abstract_inverted_index.same | 186 |
| abstract_inverted_index.seen | 149 |
| abstract_inverted_index.test | 144, 187 |
| abstract_inverted_index.then | 182 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.with | 67, 85, 176, 245 |
| abstract_inverted_index.(ESA) | 10 |
| abstract_inverted_index.(L1C) | 136 |
| abstract_inverted_index.(L2A) | 133 |
| abstract_inverted_index.(thin | 105 |
| abstract_inverted_index.Fmask | 203 |
| abstract_inverted_index.Space | 8 |
| abstract_inverted_index.U-Net | 81 |
| abstract_inverted_index.clear | 218, 240 |
| abstract_inverted_index.cloud | 27, 46, 101, 104, 107, 168, 172, 178, 197, 201, 208, 211, 220, 227, 238 |
| abstract_inverted_index.data, | 36 |
| abstract_inverted_index.image | 61 |
| abstract_inverted_index.mask, | 229 |
| abstract_inverted_index.model | 152 |
| abstract_inverted_index.since | 23 |
| abstract_inverted_index.total | 139 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.where | 189 |
| abstract_inverted_index.which | 146 |
| abstract_inverted_index.while | 242 |
| abstract_inverted_index.Agency | 9 |
| abstract_inverted_index.Clouds | 25 |
| abstract_inverted_index.During | 56 |
| abstract_inverted_index.clear, | 100, 167, 196, 207 |
| abstract_inverted_index.neural | 71 |
| abstract_inverted_index.shadow | 209 |
| abstract_inverted_index.stage, | 155 |
| abstract_inverted_index.years, | 60 |
| abstract_inverted_index.Sen2Cor | 190 |
| abstract_inverted_index.ability | 87 |
| abstract_inverted_index.classes | 212 |
| abstract_inverted_index.closest | 223 |
| abstract_inverted_index.complex | 248 |
| abstract_inverted_index.dataset | 114 |
| abstract_inverted_index.machine | 224 |
| abstract_inverted_index.methods | 180 |
| abstract_inverted_index.mission | 3 |
| abstract_inverted_index.network | 72 |
| abstract_inverted_index.optical | 34, 53 |
| abstract_inverted_index.rapidly | 66 |
| abstract_inverted_index.reached | 191, 204, 215 |
| abstract_inverted_index.schema, | 250 |
| abstract_inverted_index.shadow, | 102, 169, 198 |
| abstract_inverted_index.shadows | 28 |
| abstract_inverted_index.surface | 22 |
| abstract_inverted_index.European | 7, 118 |
| abstract_inverted_index.Level-1C | 135 |
| abstract_inverted_index.Level-2A | 132 |
| abstract_inverted_index.Northern | 117 |
| abstract_inverted_index.accurate | 43 |
| abstract_inverted_index.classes, | 202, 241 |
| abstract_inverted_index.classes. | 173, 221 |
| abstract_inverted_index.classes: | 99 |
| abstract_inverted_index.clouds), | 106 |
| abstract_inverted_index.covering | 115 |
| abstract_inverted_index.dataset, | 145, 188 |
| abstract_inverted_index.decrease | 30 |
| abstract_inverted_index.generate | 89 |
| abstract_inverted_index.invalid. | 109 |
| abstract_inverted_index.learning | 225 |
| abstract_inverted_index.northern | 94 |
| abstract_inverted_index.operated | 4 |
| abstract_inverted_index.provides | 11, 124 |
| abstract_inverted_index.reliable | 45 |
| abstract_inverted_index.Earth’s | 20 |
| abstract_inverted_index.KappaMask | 78, 123, 159, 164, 243 |
| abstract_inverted_index.developed | 65, 84 |
| abstract_inverted_index.effective | 51 |
| abstract_inverted_index.following | 98 |
| abstract_inverted_index.labelled. | 122 |
| abstract_inverted_index.latitudes | 95 |
| abstract_inverted_index.mandatory | 49 |
| abstract_inverted_index.mid-2015. | 24 |
| abstract_inverted_index.performed | 183 |
| abstract_inverted_index.processor | 79 |
| abstract_inverted_index.products. | 137 |
| abstract_inverted_index.providing | 236 |
| abstract_inverted_index.satellite | 35 |
| abstract_inverted_index.training, | 111 |
| abstract_inverted_index.usability | 32 |
| abstract_inverted_index.Copernicus | 1 |
| abstract_inverted_index.Sentinel-2 | 2, 113, 131 |
| abstract_inverted_index.comparison | 175 |
| abstract_inverted_index.continuous | 14 |
| abstract_inverted_index.especially | 37 |
| abstract_inverted_index.rule-based | 177 |
| abstract_inverted_index.techniques | 63 |
| abstract_inverted_index.therefore, | 41 |
| abstract_inverted_index.S2cloudless | 252 |
| abstract_inverted_index.coefficient | 141, 194, 235 |
| abstract_inverted_index.open-source | 226 |
| abstract_inverted_index.terrestrial | 119 |
| abstract_inverted_index.S2cloudless, | 230 |
| abstract_inverted_index.agricultural | 39 |
| abstract_inverted_index.architecture | 82 |
| abstract_inverted_index.exploitation | 69 |
| abstract_inverted_index.observations | 16 |
| abstract_inverted_index.outperformed | 251 |
| abstract_inverted_index.perspective, | 76 |
| abstract_inverted_index.segmentation | 62 |
| abstract_inverted_index.applications; | 40 |
| abstract_inverted_index.capabilities. | 73 |
| abstract_inverted_index.comprehensive | 12 |
| abstract_inverted_index.exploitation. | 55 |
| abstract_inverted_index.significantly | 29 |
| abstract_inverted_index.classification | 91, 128, 228, 249 |
| abstract_inverted_index.multi-spectral | 15 |
| abstract_inverted_index.semi-transparent | 103, 170, 199 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5007012338 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 14 |
| corresponding_institution_ids | https://openalex.org/I56085075 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.95709715 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |