KDExplainer: A Task-oriented Attention Model for Explaining Knowledge Distillation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2021/444
Knowledge distillation (KD) has recently emerged as an efficacious scheme for learning compact deep neural networks (DNNs). Despite the promising results achieved, the rationale that interprets the behavior of KD has yet remained largely understudied. In this paper, we introduce a novel task-oriented attention model, termed as KDExplainer, to shed light on the working mechanism underlying the vanilla KD. At the heart of KDExplainer is a Hierarchical Mixture of Experts (HME), in which a multi-class classification is reformulated as a multi-task binary one. Through distilling knowledge from a free-form pre-trained DNN to KDExplainer, we observe that KD implicitly modulates the knowledge conflicts between different subtasks, and in reality has much more to offer than label smoothing. Based on such findings, we further introduce a portable tool, dubbed as virtual attention module (VAM), that can be seamlessly integrated with various DNNs to enhance their performance under KD. Experimental results demonstrate that with a negligible additional cost, student models equipped with VAM consistently outperform their non-VAM counterparts across different benchmarks. Furthermore, when combined with other KD methods, VAM remains competent in promoting results, even though it is only motivated by vanilla KD. The code is available at https:// github.com/zju-vipa/KDExplainer.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2021/444
- https://www.ijcai.org/proceedings/2021/0444.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3189953745
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3189953745Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2021/444Digital Object Identifier
- Title
-
KDExplainer: A Task-oriented Attention Model for Explaining Knowledge DistillationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Mengqi Xue, Jie Song, Xinchao Wang, Ying Chen, Xingen Wang, Mingli SongList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2021/444Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2021/0444.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2021/0444.pdfDirect OA link when available
- Concepts
-
Computer science, Task (project management), Scheme (mathematics), Code (set theory), Artificial intelligence, Smoothing, Class (philosophy), Artificial neural network, Deep neural networks, Distillation, Binary number, Machine learning, Deep learning, Programming language, Arithmetic, Computer vision, Mathematical analysis, Set (abstract data type), Management, Organic chemistry, Chemistry, Mathematics, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2023: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3189953745 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2021/444 |
| ids.doi | https://doi.org/10.24963/ijcai.2021/444 |
| ids.mag | 3189953745 |
| ids.openalex | https://openalex.org/W3189953745 |
| fwci | 0.42331073 |
| type | article |
| title | KDExplainer: A Task-oriented Attention Model for Explaining Knowledge Distillation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3234 |
| biblio.first_page | 3228 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7831835746765137 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780451532 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6586049199104309 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[1].display_name | Task (project management) |
| concepts[2].id | https://openalex.org/C77618280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5956763029098511 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[2].display_name | Scheme (mathematics) |
| concepts[3].id | https://openalex.org/C2776760102 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5920411348342896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[3].display_name | Code (set theory) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5901496410369873 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C3770464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5755956768989563 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[5].display_name | Smoothing |
| concepts[6].id | https://openalex.org/C2777212361 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5573886632919312 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[6].display_name | Class (philosophy) |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5338925719261169 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2984842247 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5328282117843628 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep neural networks |
| concepts[9].id | https://openalex.org/C204030448 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5198274254798889 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[9].display_name | Distillation |
| concepts[10].id | https://openalex.org/C48372109 |
| concepts[10].level | 2 |
| concepts[10].score | 0.496188223361969 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[10].display_name | Binary number |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4683985412120819 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.462595134973526 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10098356008529663 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C94375191 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06355035305023193 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[14].display_name | Arithmetic |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| concepts[18].id | https://openalex.org/C187736073 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[18].display_name | Management |
| concepts[19].id | https://openalex.org/C178790620 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[19].display_name | Organic chemistry |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C33923547 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[21].display_name | Mathematics |
| concepts[22].id | https://openalex.org/C162324750 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[22].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7831835746765137 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6586049199104309 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/scheme |
| keywords[2].score | 0.5956763029098511 |
| keywords[2].display_name | Scheme (mathematics) |
| keywords[3].id | https://openalex.org/keywords/code |
| keywords[3].score | 0.5920411348342896 |
| keywords[3].display_name | Code (set theory) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5901496410369873 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/smoothing |
| keywords[5].score | 0.5755956768989563 |
| keywords[5].display_name | Smoothing |
| keywords[6].id | https://openalex.org/keywords/class |
| keywords[6].score | 0.5573886632919312 |
| keywords[6].display_name | Class (philosophy) |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.5338925719261169 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[8].score | 0.5328282117843628 |
| keywords[8].display_name | Deep neural networks |
| keywords[9].id | https://openalex.org/keywords/distillation |
| keywords[9].score | 0.5198274254798889 |
| keywords[9].display_name | Distillation |
| keywords[10].id | https://openalex.org/keywords/binary-number |
| keywords[10].score | 0.496188223361969 |
| keywords[10].display_name | Binary number |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4683985412120819 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.462595134973526 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/programming-language |
| keywords[13].score | 0.10098356008529663 |
| keywords[13].display_name | Programming language |
| keywords[14].id | https://openalex.org/keywords/arithmetic |
| keywords[14].score | 0.06355035305023193 |
| keywords[14].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2021/444 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2021/0444.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2021/444 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5040860593 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4936-4887 |
| authorships[0].author.display_name | Mengqi Xue |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhejiang University |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mengqi Xue |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Zhejiang University |
| authorships[1].author.id | https://openalex.org/A5047371218 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3671-6521 |
| authorships[1].author.display_name | Jie Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | Zhejiang University |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Song |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Zhejiang University |
| authorships[2].author.id | https://openalex.org/A5015574447 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0057-1404 |
| authorships[2].author.display_name | Xinchao Wang |
| authorships[2].countries | SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[2].affiliations[0].raw_affiliation_string | National University of Singapore |
| authorships[2].institutions[0].id | https://openalex.org/I165932596 |
| authorships[2].institutions[0].ror | https://ror.org/01tgyzw49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165932596 |
| authorships[2].institutions[0].country_code | SG |
| authorships[2].institutions[0].display_name | National University of Singapore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xinchao Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National University of Singapore |
| authorships[3].author.id | https://openalex.org/A5100383084 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7769-216X |
| authorships[3].author.display_name | Ying Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhejiang University |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ying Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhejiang University |
| authorships[4].author.id | https://openalex.org/A5042307193 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0507-5020 |
| authorships[4].author.display_name | Xingen Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhejiang University |
| authorships[4].institutions[0].id | https://openalex.org/I76130692 |
| authorships[4].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xingen Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhejiang University |
| authorships[5].author.id | https://openalex.org/A5026532752 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2621-6048 |
| authorships[5].author.display_name | Mingli Song |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | Zhejiang University |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mingli Song |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Zhejiang University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2021/0444.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | KDExplainer: A Task-oriented Attention Model for Explaining Knowledge Distillation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W1978572805, https://openalex.org/W2383807498, https://openalex.org/W1997992934, https://openalex.org/W4377865163, https://openalex.org/W3193857078, https://openalex.org/W2888956734, https://openalex.org/W3000197790, https://openalex.org/W4315865067, https://openalex.org/W2979433843, https://openalex.org/W3208304128 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2021/444 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2021/0444.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2021/444 |
| primary_location.id | doi:10.24963/ijcai.2021/444 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2021/0444.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2021/444 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2963122961, https://openalex.org/W2963370235, https://openalex.org/W2561238782, https://openalex.org/W2562979205, https://openalex.org/W3108643758, https://openalex.org/W3034756453, https://openalex.org/W2183341477, https://openalex.org/W2963777504, https://openalex.org/W3118608800, https://openalex.org/W3113223504, https://openalex.org/W1690739335, https://openalex.org/W2963534679, https://openalex.org/W2951527505, https://openalex.org/W2982242214, https://openalex.org/W2896457183, https://openalex.org/W3004809259, https://openalex.org/W1514535095, https://openalex.org/W2963140444, https://openalex.org/W3093410149, https://openalex.org/W2133564696, https://openalex.org/W1686810756, https://openalex.org/W2964111476, https://openalex.org/W3110791298, https://openalex.org/W2963125010, https://openalex.org/W2995607862, https://openalex.org/W2194775991, https://openalex.org/W2803023299, https://openalex.org/W1836465849, https://openalex.org/W3034795332, https://openalex.org/W2964137095, https://openalex.org/W2955192706, https://openalex.org/W2981413347, https://openalex.org/W2970726176, https://openalex.org/W1821462560, https://openalex.org/W2754084392 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 40, 65, 73, 79, 87, 123, 151 |
| abstract_inverted_index.At | 59 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.KD | 29, 96, 173 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 6, 46, 78, 127 |
| abstract_inverted_index.at | 194 |
| abstract_inverted_index.be | 134 |
| abstract_inverted_index.by | 187 |
| abstract_inverted_index.in | 71, 106, 178 |
| abstract_inverted_index.is | 64, 76, 184, 192 |
| abstract_inverted_index.it | 183 |
| abstract_inverted_index.of | 28, 62, 68 |
| abstract_inverted_index.on | 51, 117 |
| abstract_inverted_index.to | 48, 91, 111, 140 |
| abstract_inverted_index.we | 38, 93, 120 |
| abstract_inverted_index.DNN | 90 |
| abstract_inverted_index.KD. | 58, 145, 189 |
| abstract_inverted_index.The | 190 |
| abstract_inverted_index.VAM | 159, 175 |
| abstract_inverted_index.and | 105 |
| abstract_inverted_index.can | 133 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.has | 3, 30, 108 |
| abstract_inverted_index.the | 18, 22, 26, 52, 56, 60, 99 |
| abstract_inverted_index.yet | 31 |
| abstract_inverted_index.(KD) | 2 |
| abstract_inverted_index.DNNs | 139 |
| abstract_inverted_index.code | 191 |
| abstract_inverted_index.deep | 13 |
| abstract_inverted_index.even | 181 |
| abstract_inverted_index.from | 86 |
| abstract_inverted_index.more | 110 |
| abstract_inverted_index.much | 109 |
| abstract_inverted_index.one. | 82 |
| abstract_inverted_index.only | 185 |
| abstract_inverted_index.shed | 49 |
| abstract_inverted_index.such | 118 |
| abstract_inverted_index.than | 113 |
| abstract_inverted_index.that | 24, 95, 132, 149 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.when | 169 |
| abstract_inverted_index.with | 137, 150, 158, 171 |
| abstract_inverted_index.Based | 116 |
| abstract_inverted_index.cost, | 154 |
| abstract_inverted_index.heart | 61 |
| abstract_inverted_index.label | 114 |
| abstract_inverted_index.light | 50 |
| abstract_inverted_index.novel | 41 |
| abstract_inverted_index.offer | 112 |
| abstract_inverted_index.other | 172 |
| abstract_inverted_index.their | 142, 162 |
| abstract_inverted_index.tool, | 125 |
| abstract_inverted_index.under | 144 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.(HME), | 70 |
| abstract_inverted_index.(VAM), | 131 |
| abstract_inverted_index.across | 165 |
| abstract_inverted_index.binary | 81 |
| abstract_inverted_index.dubbed | 126 |
| abstract_inverted_index.model, | 44 |
| abstract_inverted_index.models | 156 |
| abstract_inverted_index.module | 130 |
| abstract_inverted_index.neural | 14 |
| abstract_inverted_index.paper, | 37 |
| abstract_inverted_index.scheme | 9 |
| abstract_inverted_index.termed | 45 |
| abstract_inverted_index.though | 182 |
| abstract_inverted_index.(DNNs). | 16 |
| abstract_inverted_index.Despite | 17 |
| abstract_inverted_index.Experts | 69 |
| abstract_inverted_index.Mixture | 67 |
| abstract_inverted_index.Through | 83 |
| abstract_inverted_index.between | 102 |
| abstract_inverted_index.compact | 12 |
| abstract_inverted_index.emerged | 5 |
| abstract_inverted_index.enhance | 141 |
| abstract_inverted_index.further | 121 |
| abstract_inverted_index.largely | 33 |
| abstract_inverted_index.non-VAM | 163 |
| abstract_inverted_index.observe | 94 |
| abstract_inverted_index.reality | 107 |
| abstract_inverted_index.remains | 176 |
| abstract_inverted_index.results | 20, 147 |
| abstract_inverted_index.student | 155 |
| abstract_inverted_index.vanilla | 57, 188 |
| abstract_inverted_index.various | 138 |
| abstract_inverted_index.virtual | 128 |
| abstract_inverted_index.working | 53 |
| abstract_inverted_index.behavior | 27 |
| abstract_inverted_index.combined | 170 |
| abstract_inverted_index.equipped | 157 |
| abstract_inverted_index.https:// | 195 |
| abstract_inverted_index.learning | 11 |
| abstract_inverted_index.methods, | 174 |
| abstract_inverted_index.networks | 15 |
| abstract_inverted_index.portable | 124 |
| abstract_inverted_index.recently | 4 |
| abstract_inverted_index.remained | 32 |
| abstract_inverted_index.results, | 180 |
| abstract_inverted_index.Knowledge | 0 |
| abstract_inverted_index.achieved, | 21 |
| abstract_inverted_index.attention | 43, 129 |
| abstract_inverted_index.available | 193 |
| abstract_inverted_index.competent | 177 |
| abstract_inverted_index.conflicts | 101 |
| abstract_inverted_index.different | 103, 166 |
| abstract_inverted_index.findings, | 119 |
| abstract_inverted_index.free-form | 88 |
| abstract_inverted_index.introduce | 39, 122 |
| abstract_inverted_index.knowledge | 85, 100 |
| abstract_inverted_index.mechanism | 54 |
| abstract_inverted_index.modulates | 98 |
| abstract_inverted_index.motivated | 186 |
| abstract_inverted_index.promising | 19 |
| abstract_inverted_index.promoting | 179 |
| abstract_inverted_index.rationale | 23 |
| abstract_inverted_index.subtasks, | 104 |
| abstract_inverted_index.additional | 153 |
| abstract_inverted_index.distilling | 84 |
| abstract_inverted_index.implicitly | 97 |
| abstract_inverted_index.integrated | 136 |
| abstract_inverted_index.interprets | 25 |
| abstract_inverted_index.multi-task | 80 |
| abstract_inverted_index.negligible | 152 |
| abstract_inverted_index.outperform | 161 |
| abstract_inverted_index.seamlessly | 135 |
| abstract_inverted_index.smoothing. | 115 |
| abstract_inverted_index.underlying | 55 |
| abstract_inverted_index.KDExplainer | 63 |
| abstract_inverted_index.benchmarks. | 167 |
| abstract_inverted_index.demonstrate | 148 |
| abstract_inverted_index.efficacious | 8 |
| abstract_inverted_index.multi-class | 74 |
| abstract_inverted_index.performance | 143 |
| abstract_inverted_index.pre-trained | 89 |
| abstract_inverted_index.Experimental | 146 |
| abstract_inverted_index.Furthermore, | 168 |
| abstract_inverted_index.Hierarchical | 66 |
| abstract_inverted_index.KDExplainer, | 47, 92 |
| abstract_inverted_index.consistently | 160 |
| abstract_inverted_index.counterparts | 164 |
| abstract_inverted_index.distillation | 1 |
| abstract_inverted_index.reformulated | 77 |
| abstract_inverted_index.task-oriented | 42 |
| abstract_inverted_index.understudied. | 34 |
| abstract_inverted_index.classification | 75 |
| abstract_inverted_index.github.com/zju-vipa/KDExplainer. | 196 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.69379279 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |