Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/access.2021.3086021
Keratoconus (KCN) is an eye condition that affects the cornea. The main objective of this study is to evaluate the accuracy of keratoconus detection from corneal parameters including elevation, topography and pachymetry using machine learning algorithms. We developed several machine learning models to detect keratoconus from corneal elevation, topography and pachymetry parameters that were obtained from 5881 eyes of 2800 patients in Brazil using a Pentacam Scheimpflug instrument. Elevation parameters provided the highest area under the curve (AUC) parameter of 0.99 in detecting normal from keratoconus cases and an AUC of 0.88 in detecting different severity levels when using only three most promising corneal parameters including minimum curvature radius, eccentricity of the cornea and asphericity of the cornea. The developed algorithm can distinguish early KCN eyes from healthy eyes with a high accuracy obtaining an AUC of 0.97. From a clinical point of view the detection of early KCN is very important because KCN patients are usually misdiagnosed due to early symptoms. Results suggest that elevation parameters may retain more useful information for detecting keratoconus than historically believed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2021.3086021
- https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdf
- OA Status
- gold
- Cited By
- 29
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3171647065
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3171647065Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2021.3086021Digital Object Identifier
- Title
-
Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Alexandru Lavric, Liliana Anchidin, Valentin Popa, Ali H. Al‐Timemy, Zaid Abdi Alkareem Alyasseri, Hidenori Takahashi, Siamak Yousefi, Rossen Mihaylov HazarbassanovList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2021.3086021Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdfDirect OA link when available
- Concepts
-
Keratoconus, Scheimpflug principle, Cornea, Elevation (ballistics), Ophthalmology, Corneal topography, Corneal pachymetry, Radius of curvature, Curvature, Computer science, Artificial intelligence, Optometry, Medicine, Mathematics, Mean curvature, Geometry, Mean curvature flowTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 8, 2023: 4, 2022: 6, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3171647065 |
|---|---|
| doi | https://doi.org/10.1109/access.2021.3086021 |
| ids.doi | https://doi.org/10.1109/access.2021.3086021 |
| ids.mag | 3171647065 |
| ids.openalex | https://openalex.org/W3171647065 |
| fwci | 3.09325018 |
| type | article |
| title | Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach |
| biblio.issue | |
| biblio.volume | 9 |
| biblio.last_page | 84355 |
| biblio.first_page | 84344 |
| topics[0].id | https://openalex.org/T10563 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Corneal surgery and disorders |
| topics[1].id | https://openalex.org/T10997 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2739 |
| topics[1].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[1].display_name | Ocular Surface and Contact Lens |
| topics[2].id | https://openalex.org/T10250 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2731 |
| topics[2].subfield.display_name | Ophthalmology |
| topics[2].display_name | Glaucoma and retinal disorders |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C2778918178 |
| concepts[0].level | 3 |
| concepts[0].score | 0.978025496006012 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q611984 |
| concepts[0].display_name | Keratoconus |
| concepts[1].id | https://openalex.org/C169363364 |
| concepts[1].level | 3 |
| concepts[1].score | 0.9659240245819092 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1570106 |
| concepts[1].display_name | Scheimpflug principle |
| concepts[2].id | https://openalex.org/C2776882836 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7344233989715576 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q168291 |
| concepts[2].display_name | Cornea |
| concepts[3].id | https://openalex.org/C37054046 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7328585386276245 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q641888 |
| concepts[3].display_name | Elevation (ballistics) |
| concepts[4].id | https://openalex.org/C118487528 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5831266045570374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q161437 |
| concepts[4].display_name | Ophthalmology |
| concepts[5].id | https://openalex.org/C2781053140 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5492236614227295 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3501232 |
| concepts[5].display_name | Corneal topography |
| concepts[6].id | https://openalex.org/C2776731418 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5215068459510803 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q598876 |
| concepts[6].display_name | Corneal pachymetry |
| concepts[7].id | https://openalex.org/C11665553 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4628538191318512 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1136069 |
| concepts[7].display_name | Radius of curvature |
| concepts[8].id | https://openalex.org/C195065555 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4434933364391327 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q214881 |
| concepts[8].display_name | Curvature |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.43615901470184326 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4242957532405853 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119767625 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3550032377243042 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q618211 |
| concepts[11].display_name | Optometry |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.35144126415252686 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2840511202812195 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C175017881 |
| concepts[14].level | 3 |
| concepts[14].score | 0.08096861839294434 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1318998 |
| concepts[14].display_name | Mean curvature |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C127813850 |
| concepts[16].level | 4 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q6803617 |
| concepts[16].display_name | Mean curvature flow |
| keywords[0].id | https://openalex.org/keywords/keratoconus |
| keywords[0].score | 0.978025496006012 |
| keywords[0].display_name | Keratoconus |
| keywords[1].id | https://openalex.org/keywords/scheimpflug-principle |
| keywords[1].score | 0.9659240245819092 |
| keywords[1].display_name | Scheimpflug principle |
| keywords[2].id | https://openalex.org/keywords/cornea |
| keywords[2].score | 0.7344233989715576 |
| keywords[2].display_name | Cornea |
| keywords[3].id | https://openalex.org/keywords/elevation |
| keywords[3].score | 0.7328585386276245 |
| keywords[3].display_name | Elevation (ballistics) |
| keywords[4].id | https://openalex.org/keywords/ophthalmology |
| keywords[4].score | 0.5831266045570374 |
| keywords[4].display_name | Ophthalmology |
| keywords[5].id | https://openalex.org/keywords/corneal-topography |
| keywords[5].score | 0.5492236614227295 |
| keywords[5].display_name | Corneal topography |
| keywords[6].id | https://openalex.org/keywords/corneal-pachymetry |
| keywords[6].score | 0.5215068459510803 |
| keywords[6].display_name | Corneal pachymetry |
| keywords[7].id | https://openalex.org/keywords/radius-of-curvature |
| keywords[7].score | 0.4628538191318512 |
| keywords[7].display_name | Radius of curvature |
| keywords[8].id | https://openalex.org/keywords/curvature |
| keywords[8].score | 0.4434933364391327 |
| keywords[8].display_name | Curvature |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.43615901470184326 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.4242957532405853 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/optometry |
| keywords[11].score | 0.3550032377243042 |
| keywords[11].display_name | Optometry |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.35144126415252686 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2840511202812195 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/mean-curvature |
| keywords[14].score | 0.08096861839294434 |
| keywords[14].display_name | Mean curvature |
| language | en |
| locations[0].id | doi:10.1109/access.2021.3086021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2021.3086021 |
| locations[1].id | pmh:oai:doaj.org/article:af9153e84b0e4b108123d8b1080c164f |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 9, Pp 84344-84355 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/af9153e84b0e4b108123d8b1080c164f |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042957051 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7734-4854 |
| authorships[0].author.display_name | Alexandru Lavric |
| authorships[0].countries | RO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I12012874 |
| authorships[0].affiliations[0].raw_affiliation_string | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[0].institutions[0].id | https://openalex.org/I12012874 |
| authorships[0].institutions[0].ror | https://ror.org/035pkj773 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I12012874 |
| authorships[0].institutions[0].country_code | RO |
| authorships[0].institutions[0].display_name | Ştefan cel Mare University of Suceava |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alexandru Lavric |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[1].author.id | https://openalex.org/A5050946501 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Liliana Anchidin |
| authorships[1].countries | RO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I12012874 |
| authorships[1].affiliations[0].raw_affiliation_string | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[1].institutions[0].id | https://openalex.org/I12012874 |
| authorships[1].institutions[0].ror | https://ror.org/035pkj773 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I12012874 |
| authorships[1].institutions[0].country_code | RO |
| authorships[1].institutions[0].display_name | Ştefan cel Mare University of Suceava |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liliana Anchidin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[2].author.id | https://openalex.org/A5055368259 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2437-6689 |
| authorships[2].author.display_name | Valentin Popa |
| authorships[2].countries | RO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12012874 |
| authorships[2].affiliations[0].raw_affiliation_string | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[2].institutions[0].id | https://openalex.org/I12012874 |
| authorships[2].institutions[0].ror | https://ror.org/035pkj773 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12012874 |
| authorships[2].institutions[0].country_code | RO |
| authorships[2].institutions[0].display_name | Ştefan cel Mare University of Suceava |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Valentin Popa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Stefan cel Mare University of Suceava, Suceava, Romania |
| authorships[3].author.id | https://openalex.org/A5066206447 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2738-8896 |
| authorships[3].author.display_name | Ali H. Al‐Timemy |
| authorships[3].countries | IQ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135120706 |
| authorships[3].affiliations[0].raw_affiliation_string | Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq |
| authorships[3].institutions[0].id | https://openalex.org/I135120706 |
| authorships[3].institutions[0].ror | https://ror.org/007f1da21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135120706 |
| authorships[3].institutions[0].country_code | IQ |
| authorships[3].institutions[0].display_name | University of Baghdad |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ali H. Al-Timemy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq |
| authorships[4].author.id | https://openalex.org/A5062826520 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4228-9298 |
| authorships[4].author.display_name | Zaid Abdi Alkareem Alyasseri |
| authorships[4].countries | IQ, MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[4].affiliations[0].raw_affiliation_string | Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Malaysia |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I47229656 |
| authorships[4].affiliations[1].raw_affiliation_string | Faculty of Engineering, University of Kufa, Najaf, Iraq |
| authorships[4].institutions[0].id | https://openalex.org/I47229656 |
| authorships[4].institutions[0].ror | https://ror.org/02dwrdh81 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I47229656 |
| authorships[4].institutions[0].country_code | IQ |
| authorships[4].institutions[0].display_name | University of Kufa |
| authorships[4].institutions[1].id | https://openalex.org/I885383172 |
| authorships[4].institutions[1].ror | https://ror.org/00bw8d226 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I885383172 |
| authorships[4].institutions[1].country_code | MY |
| authorships[4].institutions[1].display_name | National University of Malaysia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zaid Alyasseri |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Malaysia, Faculty of Engineering, University of Kufa, Najaf, Iraq |
| authorships[5].author.id | https://openalex.org/A5032313766 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5331-4730 |
| authorships[5].author.display_name | Hidenori Takahashi |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I146500386 |
| authorships[5].affiliations[0].raw_affiliation_string | Jichi Medical University, Tochigi, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I146500386 |
| authorships[5].institutions[0].ror | https://ror.org/010hz0g26 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I146500386 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Jichi Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hidenori Takahashi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Jichi Medical University, Tochigi, Japan |
| authorships[6].author.id | https://openalex.org/A5036981123 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8633-5730 |
| authorships[6].author.display_name | Siamak Yousefi |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I160606119 |
| authorships[6].affiliations[0].raw_affiliation_string | The University of Tennessee Health Science Center, Memphis, TN, USA |
| authorships[6].institutions[0].id | https://openalex.org/I160606119 |
| authorships[6].institutions[0].ror | https://ror.org/0011qv509 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I160606119 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Tennessee Health Science Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Siamak Yousefi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | The University of Tennessee Health Science Center, Memphis, TN, USA |
| authorships[7].author.id | https://openalex.org/A5031619084 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3096-6514 |
| authorships[7].author.display_name | Rossen Mihaylov Hazarbassanov |
| authorships[7].countries | BR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I88273585 |
| authorships[7].affiliations[0].raw_affiliation_string | Federal University of São Paulo, São Paulo, Brazil |
| authorships[7].institutions[0].id | https://openalex.org/I88273585 |
| authorships[7].institutions[0].ror | https://ror.org/02k5swt12 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I88273585 |
| authorships[7].institutions[0].country_code | BR |
| authorships[7].institutions[0].display_name | Universidade Federal de São Paulo |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rossen M. Hazarbassanov |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Federal University of São Paulo, São Paulo, Brazil |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Keratoconus Severity Detection From Elevation, Topography and Pachymetry Raw Data Using a Machine Learning Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10563 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Corneal surgery and disorders |
| related_works | https://openalex.org/W984084103, https://openalex.org/W757016915, https://openalex.org/W2978402652, https://openalex.org/W2052551923, https://openalex.org/W2487535363, https://openalex.org/W2068085639, https://openalex.org/W3032667539, https://openalex.org/W3082585764, https://openalex.org/W4306174759, https://openalex.org/W3166884651 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2021.3086021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2021.3086021 |
| primary_location.id | doi:10.1109/access.2021.3086021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09446142.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2021.3086021 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2337920748, https://openalex.org/W3017409929, https://openalex.org/W4285675314, https://openalex.org/W2155889931, https://openalex.org/W3046497321, https://openalex.org/W2995529593, https://openalex.org/W2079844430, https://openalex.org/W2010992449, https://openalex.org/W1979631398, https://openalex.org/W2069796630, https://openalex.org/W2979316633, https://openalex.org/W3048616271, https://openalex.org/W3045815107, https://openalex.org/W3080396748, https://openalex.org/W3007455487, https://openalex.org/W2070787816, https://openalex.org/W2743531063, https://openalex.org/W3072866105, https://openalex.org/W1602799071, https://openalex.org/W3092356421, https://openalex.org/W6774101725, https://openalex.org/W2142581967, https://openalex.org/W2032316777, https://openalex.org/W2044737732, https://openalex.org/W2178895342, https://openalex.org/W2604521915, https://openalex.org/W2030209399, https://openalex.org/W2010753368, https://openalex.org/W3013031935, https://openalex.org/W2473518430, https://openalex.org/W2911600747, https://openalex.org/W2970563498, https://openalex.org/W6786456347, https://openalex.org/W6658353859, https://openalex.org/W2882993919, https://openalex.org/W2548106743, https://openalex.org/W2134588606, https://openalex.org/W2319524494, https://openalex.org/W2016962746, https://openalex.org/W3112864781, https://openalex.org/W3014460078, https://openalex.org/W3046298464, https://openalex.org/W3104216408, https://openalex.org/W2966690014, https://openalex.org/W2725383073, https://openalex.org/W2143958786, https://openalex.org/W6784690937, https://openalex.org/W2883239338, https://openalex.org/W2017337590, https://openalex.org/W2115137233, https://openalex.org/W2011628315, https://openalex.org/W2959969964, https://openalex.org/W3095914904, https://openalex.org/W3107381992, https://openalex.org/W3005887194, https://openalex.org/W2031625131 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 64, 130, 139 |
| abstract_inverted_index.We | 36 |
| abstract_inverted_index.an | 3, 88, 134 |
| abstract_inverted_index.in | 61, 81, 92 |
| abstract_inverted_index.is | 2, 16, 149 |
| abstract_inverted_index.of | 13, 21, 58, 79, 90, 110, 115, 136, 142, 146 |
| abstract_inverted_index.to | 17, 42, 159 |
| abstract_inverted_index.AUC | 89, 135 |
| abstract_inverted_index.KCN | 124, 148, 153 |
| abstract_inverted_index.The | 10, 118 |
| abstract_inverted_index.and | 30, 49, 87, 113 |
| abstract_inverted_index.are | 155 |
| abstract_inverted_index.can | 121 |
| abstract_inverted_index.due | 158 |
| abstract_inverted_index.eye | 4 |
| abstract_inverted_index.for | 172 |
| abstract_inverted_index.may | 167 |
| abstract_inverted_index.the | 8, 19, 71, 75, 111, 116, 144 |
| abstract_inverted_index.0.88 | 91 |
| abstract_inverted_index.0.99 | 80 |
| abstract_inverted_index.2800 | 59 |
| abstract_inverted_index.5881 | 56 |
| abstract_inverted_index.From | 138 |
| abstract_inverted_index.area | 73 |
| abstract_inverted_index.eyes | 57, 125, 128 |
| abstract_inverted_index.from | 24, 45, 55, 84, 126 |
| abstract_inverted_index.high | 131 |
| abstract_inverted_index.main | 11 |
| abstract_inverted_index.more | 169 |
| abstract_inverted_index.most | 101 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.than | 175 |
| abstract_inverted_index.that | 6, 52, 164 |
| abstract_inverted_index.this | 14 |
| abstract_inverted_index.very | 150 |
| abstract_inverted_index.view | 143 |
| abstract_inverted_index.were | 53 |
| abstract_inverted_index.when | 97 |
| abstract_inverted_index.with | 129 |
| abstract_inverted_index.(AUC) | 77 |
| abstract_inverted_index.(KCN) | 1 |
| abstract_inverted_index.0.97. | 137 |
| abstract_inverted_index.cases | 86 |
| abstract_inverted_index.curve | 76 |
| abstract_inverted_index.early | 123, 147, 160 |
| abstract_inverted_index.point | 141 |
| abstract_inverted_index.study | 15 |
| abstract_inverted_index.three | 100 |
| abstract_inverted_index.under | 74 |
| abstract_inverted_index.using | 32, 63, 98 |
| abstract_inverted_index.Brazil | 62 |
| abstract_inverted_index.cornea | 112 |
| abstract_inverted_index.detect | 43 |
| abstract_inverted_index.levels | 96 |
| abstract_inverted_index.models | 41 |
| abstract_inverted_index.normal | 83 |
| abstract_inverted_index.retain | 168 |
| abstract_inverted_index.useful | 170 |
| abstract_inverted_index.Results | 162 |
| abstract_inverted_index.affects | 7 |
| abstract_inverted_index.because | 152 |
| abstract_inverted_index.cornea. | 9, 117 |
| abstract_inverted_index.corneal | 25, 46, 103 |
| abstract_inverted_index.healthy | 127 |
| abstract_inverted_index.highest | 72 |
| abstract_inverted_index.machine | 33, 39 |
| abstract_inverted_index.minimum | 106 |
| abstract_inverted_index.radius, | 108 |
| abstract_inverted_index.several | 38 |
| abstract_inverted_index.suggest | 163 |
| abstract_inverted_index.usually | 156 |
| abstract_inverted_index.Pentacam | 65 |
| abstract_inverted_index.accuracy | 20, 132 |
| abstract_inverted_index.clinical | 140 |
| abstract_inverted_index.evaluate | 18 |
| abstract_inverted_index.learning | 34, 40 |
| abstract_inverted_index.obtained | 54 |
| abstract_inverted_index.patients | 60, 154 |
| abstract_inverted_index.provided | 70 |
| abstract_inverted_index.severity | 95 |
| abstract_inverted_index.Elevation | 68 |
| abstract_inverted_index.algorithm | 120 |
| abstract_inverted_index.believed. | 177 |
| abstract_inverted_index.condition | 5 |
| abstract_inverted_index.curvature | 107 |
| abstract_inverted_index.detecting | 82, 93, 173 |
| abstract_inverted_index.detection | 23, 145 |
| abstract_inverted_index.developed | 37, 119 |
| abstract_inverted_index.different | 94 |
| abstract_inverted_index.elevation | 165 |
| abstract_inverted_index.important | 151 |
| abstract_inverted_index.including | 27, 105 |
| abstract_inverted_index.objective | 12 |
| abstract_inverted_index.obtaining | 133 |
| abstract_inverted_index.parameter | 78 |
| abstract_inverted_index.promising | 102 |
| abstract_inverted_index.symptoms. | 161 |
| abstract_inverted_index.elevation, | 28, 47 |
| abstract_inverted_index.pachymetry | 31, 50 |
| abstract_inverted_index.parameters | 26, 51, 69, 104, 166 |
| abstract_inverted_index.topography | 29, 48 |
| abstract_inverted_index.Keratoconus | 0 |
| abstract_inverted_index.Scheimpflug | 66 |
| abstract_inverted_index.algorithms. | 35 |
| abstract_inverted_index.asphericity | 114 |
| abstract_inverted_index.distinguish | 122 |
| abstract_inverted_index.information | 171 |
| abstract_inverted_index.instrument. | 67 |
| abstract_inverted_index.keratoconus | 22, 44, 85, 174 |
| abstract_inverted_index.eccentricity | 109 |
| abstract_inverted_index.historically | 176 |
| abstract_inverted_index.misdiagnosed | 157 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| countries_distinct_count | 6 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.90932573 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |