Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.13486
We introduce a novel topology, called Kernel Mean Embedding Topology, for stochastic kernels, in a weak and strong form. This topology, defined on the spaces of Bochner integrable functions from a signal space to a space of probability measures endowed with a Hilbert space structure, allows for a versatile formulation. This construction allows one to obtain both a strong and weak formulation. (i) For its weak formulation, we highlight the utility on relaxed policy spaces, and investigate connections with the Young narrow topology and Borkar (or \( w^* \))-topology, and establish equivalence properties. We report that, while both the \( w^* \)-topology and kernel mean embedding topology are relatively compact, they are not closed. Conversely, while the Young narrow topology is closed, it lacks relative compactness. (ii) We show that the strong form provides an appropriate formulation for placing topologies on spaces of models characterized by stochastic kernels with explicit robustness and learning theoretic implications on optimal stochastic control under discounted or average cost criteria. (iii) We thus show that this topology possesses several properties making it ideal to study optimality and approximations (under the weak formulation) and robustness (under the strong formulation) for many applications.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.13486
- https://arxiv.org/pdf/2502.13486
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407764334
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407764334Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.13486Digital Object Identifier
- Title
-
Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
Naci Saldı, Serdar YükselList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.13486Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.13486Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.13486Direct OA link when available
- Concepts
-
Embedding, Kernel (algebra), Topology (electrical circuits), Mathematics, Computer science, Artificial intelligence, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407764334 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.13486 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.13486 |
| ids.openalex | https://openalex.org/W4407764334 |
| fwci | |
| type | preprint |
| title | Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9761999845504761 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12814 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9379000067710876 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Gaussian Processes and Bayesian Inference |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9144999980926514 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41608201 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7297477722167969 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[0].display_name | Embedding |
| concepts[1].id | https://openalex.org/C74193536 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6500236988067627 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[1].display_name | Kernel (algebra) |
| concepts[2].id | https://openalex.org/C184720557 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4768346846103668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[2].display_name | Topology (electrical circuits) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.47428208589553833 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4267244338989258 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.329531192779541 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C114614502 |
| concepts[6].level | 1 |
| concepts[6].score | 0.21690145134925842 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[6].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/embedding |
| keywords[0].score | 0.7297477722167969 |
| keywords[0].display_name | Embedding |
| keywords[1].id | https://openalex.org/keywords/kernel |
| keywords[1].score | 0.6500236988067627 |
| keywords[1].display_name | Kernel (algebra) |
| keywords[2].id | https://openalex.org/keywords/topology |
| keywords[2].score | 0.4768346846103668 |
| keywords[2].display_name | Topology (electrical circuits) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.47428208589553833 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4267244338989258 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.329531192779541 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/combinatorics |
| keywords[6].score | 0.21690145134925842 |
| keywords[6].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.13486 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.13486 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.13486 |
| locations[1].id | doi:10.48550/arxiv.2502.13486 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.13486 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029240602 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2677-7366 |
| authorships[0].author.display_name | Naci Saldı |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saldi, Naci |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5005401257 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6099-5001 |
| authorships[1].author.display_name | Serdar Yüksel |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yuksel, Serdar |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.13486 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9761999845504761 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2962838298, https://openalex.org/W2600246793 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.13486 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.13486 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.13486 |
| primary_location.id | pmh:oai:arXiv.org:2502.13486 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.13486 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.13486 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 14, 30, 34, 41, 47, 57 |
| abstract_inverted_index.We | 0, 93, 127, 166 |
| abstract_inverted_index.\( | 86, 99 |
| abstract_inverted_index.an | 134 |
| abstract_inverted_index.by | 145 |
| abstract_inverted_index.in | 13 |
| abstract_inverted_index.is | 120 |
| abstract_inverted_index.it | 122, 176 |
| abstract_inverted_index.of | 25, 36, 142 |
| abstract_inverted_index.on | 22, 71, 140, 155 |
| abstract_inverted_index.or | 161 |
| abstract_inverted_index.to | 33, 54, 178 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.(i) | 62 |
| abstract_inverted_index.(or | 85 |
| abstract_inverted_index.For | 63 |
| abstract_inverted_index.and | 16, 59, 75, 83, 89, 102, 151, 181, 187 |
| abstract_inverted_index.are | 107, 111 |
| abstract_inverted_index.for | 10, 46, 137, 193 |
| abstract_inverted_index.its | 64 |
| abstract_inverted_index.not | 112 |
| abstract_inverted_index.one | 53 |
| abstract_inverted_index.the | 23, 69, 79, 98, 116, 130, 184, 190 |
| abstract_inverted_index.w^* | 87, 100 |
| abstract_inverted_index.(ii) | 126 |
| abstract_inverted_index.Mean | 7 |
| abstract_inverted_index.This | 19, 50 |
| abstract_inverted_index.both | 56, 97 |
| abstract_inverted_index.cost | 163 |
| abstract_inverted_index.form | 132 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.many | 194 |
| abstract_inverted_index.mean | 104 |
| abstract_inverted_index.show | 128, 168 |
| abstract_inverted_index.that | 129, 169 |
| abstract_inverted_index.they | 110 |
| abstract_inverted_index.this | 170 |
| abstract_inverted_index.thus | 167 |
| abstract_inverted_index.weak | 15, 60, 65, 185 |
| abstract_inverted_index.with | 40, 78, 148 |
| abstract_inverted_index.(iii) | 165 |
| abstract_inverted_index.Young | 80, 117 |
| abstract_inverted_index.form. | 18 |
| abstract_inverted_index.ideal | 177 |
| abstract_inverted_index.lacks | 123 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.space | 32, 35, 43 |
| abstract_inverted_index.study | 179 |
| abstract_inverted_index.that, | 95 |
| abstract_inverted_index.under | 159 |
| abstract_inverted_index.while | 96, 115 |
| abstract_inverted_index.(under | 183, 189 |
| abstract_inverted_index.Borkar | 84 |
| abstract_inverted_index.Kernel | 6 |
| abstract_inverted_index.allows | 45, 52 |
| abstract_inverted_index.called | 5 |
| abstract_inverted_index.kernel | 103 |
| abstract_inverted_index.making | 175 |
| abstract_inverted_index.models | 143 |
| abstract_inverted_index.narrow | 81, 118 |
| abstract_inverted_index.obtain | 55 |
| abstract_inverted_index.policy | 73 |
| abstract_inverted_index.report | 94 |
| abstract_inverted_index.signal | 31 |
| abstract_inverted_index.spaces | 24, 141 |
| abstract_inverted_index.strong | 17, 58, 131, 191 |
| abstract_inverted_index.Bochner | 26 |
| abstract_inverted_index.Hilbert | 42 |
| abstract_inverted_index.average | 162 |
| abstract_inverted_index.closed, | 121 |
| abstract_inverted_index.closed. | 113 |
| abstract_inverted_index.control | 158 |
| abstract_inverted_index.defined | 21 |
| abstract_inverted_index.endowed | 39 |
| abstract_inverted_index.kernels | 147 |
| abstract_inverted_index.optimal | 156 |
| abstract_inverted_index.placing | 138 |
| abstract_inverted_index.relaxed | 72 |
| abstract_inverted_index.several | 173 |
| abstract_inverted_index.spaces, | 74 |
| abstract_inverted_index.utility | 70 |
| abstract_inverted_index.compact, | 109 |
| abstract_inverted_index.explicit | 149 |
| abstract_inverted_index.kernels, | 12 |
| abstract_inverted_index.learning | 152 |
| abstract_inverted_index.measures | 38 |
| abstract_inverted_index.provides | 133 |
| abstract_inverted_index.relative | 124 |
| abstract_inverted_index.topology | 82, 106, 119, 171 |
| abstract_inverted_index.Embedding | 8 |
| abstract_inverted_index.Topology, | 9 |
| abstract_inverted_index.criteria. | 164 |
| abstract_inverted_index.embedding | 105 |
| abstract_inverted_index.establish | 90 |
| abstract_inverted_index.functions | 28 |
| abstract_inverted_index.highlight | 68 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.possesses | 172 |
| abstract_inverted_index.theoretic | 153 |
| abstract_inverted_index.topology, | 4, 20 |
| abstract_inverted_index.versatile | 48 |
| abstract_inverted_index.discounted | 160 |
| abstract_inverted_index.integrable | 27 |
| abstract_inverted_index.optimality | 180 |
| abstract_inverted_index.properties | 174 |
| abstract_inverted_index.relatively | 108 |
| abstract_inverted_index.robustness | 150, 188 |
| abstract_inverted_index.stochastic | 11, 146, 157 |
| abstract_inverted_index.structure, | 44 |
| abstract_inverted_index.topologies | 139 |
| abstract_inverted_index.Conversely, | 114 |
| abstract_inverted_index.\)-topology | 101 |
| abstract_inverted_index.appropriate | 135 |
| abstract_inverted_index.connections | 77 |
| abstract_inverted_index.equivalence | 91 |
| abstract_inverted_index.formulation | 136 |
| abstract_inverted_index.investigate | 76 |
| abstract_inverted_index.probability | 37 |
| abstract_inverted_index.properties. | 92 |
| abstract_inverted_index.compactness. | 125 |
| abstract_inverted_index.construction | 51 |
| abstract_inverted_index.formulation) | 186, 192 |
| abstract_inverted_index.formulation, | 66 |
| abstract_inverted_index.formulation. | 49, 61 |
| abstract_inverted_index.implications | 154 |
| abstract_inverted_index.\))-topology, | 88 |
| abstract_inverted_index.applications. | 195 |
| abstract_inverted_index.characterized | 144 |
| abstract_inverted_index.approximations | 182 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |