KGDAL Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1145/3459930.3469513
With the rapid accumulation of electronic health record (EHR) data, deep learning (DL) models have exhibited promising performance on patient risk prediction. Recent advances have also demonstrated the effectiveness of knowledge graphs (KG) in providing valuable prior knowledge for further improving DL model performance. However, it is still unclear how KG can be utilized to encode high-order relations among clinical concepts and how DL models can make full use of the encoded concept relations to solve real-world healthcare problems and to interpret the outcomes. We propose a novel knowledge graph guided double attention LSTM model named KGDAL for rolling mortality prediction for critically ill patients with acute kidney injury requiring dialysis (AKI-D). KGDAL constructs a KG-based two-dimension attention in both time and feature spaces. In the experiment with two large healthcare datasets, we compared KGDAL with a variety of rolling mortality prediction models and conducted an ablation study to test the effectiveness, efficacy, and contribution of different attention mechanisms. The results showed that KGDAL clearly outperformed all the compared models. Also, KGDAL-derived patient risk trajectories may assist healthcare providers to make timely decisions and actions. The source code, sample data, and manual of KGDAL are available at https://github.com/lucasliu0928/KGDAL.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3459930.3469513
- OA Status
- green
- Cited By
- 8
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3191090955
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3191090955Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3459930.3469513Digital Object Identifier
- Title
-
KGDALWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-30Full publication date if available
- Authors
-
Lucas J. Liu, Victor Ortiz-Soriano, Javier A. Neyra, Jin ChenList of authors in order
- Landing page
-
https://doi.org/10.1145/3459930.3469513Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8445228Direct OA link when available
- Concepts
-
Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 2, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3191090955 |
|---|---|
| doi | https://doi.org/10.1145/3459930.3469513 |
| ids.doi | https://doi.org/10.1145/3459930.3469513 |
| ids.mag | 3191090955 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34541583 |
| ids.openalex | https://openalex.org/W3191090955 |
| fwci | 1.1288286 |
| type | article |
| title | KGDAL |
| awards[0].id | https://openalex.org/G3779467596 |
| awards[0].funder_id | https://openalex.org/F4320337357 |
| awards[0].display_name | |
| awards[0].funder_award_id | R56DK126930, P30DK079337 |
| awards[0].funder_display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| biblio.issue | |
| biblio.volume | 2021 |
| biblio.last_page | 10 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9864000082015991 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10094 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9365000128746033 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2738 |
| topics[1].subfield.display_name | Psychiatry and Mental health |
| topics[1].display_name | Epilepsy research and treatment |
| topics[2].id | https://openalex.org/T10401 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9352999925613403 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes Treatment and Management |
| funders[0].id | https://openalex.org/F4320337357 |
| funders[0].ror | https://ror.org/00adh9b73 |
| funders[0].display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5117065906524658 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5117065906524658 |
| keywords[0].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1145/3459930.3469513 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 12th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics |
| locations[0].landing_page_url | https://doi.org/10.1145/3459930.3469513 |
| locations[1].id | pmid:34541583 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34541583 |
| locations[2].id | pmh:oai:europepmc.org:7337090 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://europepmc.org/pmc/articles/PMC8445228 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8445228 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | ACM BCB |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8445228 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5007370340 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2890-9673 |
| authorships[0].author.display_name | Lucas J. Liu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Kentucky |
| authorships[0].institutions[0].id | https://openalex.org/I143302722 |
| authorships[0].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Kentucky |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lucas Jing Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Kentucky |
| authorships[1].author.id | https://openalex.org/A5014069097 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8527-6919 |
| authorships[1].author.display_name | Victor Ortiz-Soriano |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Kentucky Medical Center |
| authorships[1].institutions[0].id | https://openalex.org/I143302722 |
| authorships[1].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Kentucky |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Victor Ortiz-Soriano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Kentucky Medical Center |
| authorships[2].author.id | https://openalex.org/A5010644370 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2817-2459 |
| authorships[2].author.display_name | Javier A. Neyra |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Kentucky Medical Center |
| authorships[2].institutions[0].id | https://openalex.org/I143302722 |
| authorships[2].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Kentucky |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Javier A. Neyra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Kentucky Medical Center |
| authorships[3].author.id | https://openalex.org/A5100457144 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6076-1141 |
| authorships[3].author.display_name | Jin Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Kentucky |
| authorships[3].institutions[0].id | https://openalex.org/I143302722 |
| authorships[3].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Kentucky |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jin Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Kentucky |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8445228 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-08-16T00:00:00 |
| display_name | KGDAL |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9864000082015991 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8445228 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | ACM BCB |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8445228 |
| primary_location.id | doi:10.1145/3459930.3469513 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 12th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics |
| primary_location.landing_page_url | https://doi.org/10.1145/3459930.3469513 |
| publication_date | 2021-07-30 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2964006392, https://openalex.org/W2911778742, https://openalex.org/W2047621580, https://openalex.org/W2077967941, https://openalex.org/W2295598076, https://openalex.org/W2557074642, https://openalex.org/W2104824844, https://openalex.org/W2190647908, https://openalex.org/W2021876446, https://openalex.org/W2163900716, https://openalex.org/W2968723626, https://openalex.org/W3106811464, https://openalex.org/W2914405142, https://openalex.org/W1999577714, https://openalex.org/W2606071384, https://openalex.org/W2432819573, https://openalex.org/W2136410628, https://openalex.org/W2787810682, https://openalex.org/W2970988466, https://openalex.org/W2015462679, https://openalex.org/W2136709241, https://openalex.org/W2085032170, https://openalex.org/W2148001954, https://openalex.org/W2126332577, https://openalex.org/W2109382786, https://openalex.org/W3003504112, https://openalex.org/W2517194566, https://openalex.org/W2625625371, https://openalex.org/W2064675550, https://openalex.org/W2582602949, https://openalex.org/W2127795553, https://openalex.org/W3091454251, https://openalex.org/W3104523752, https://openalex.org/W2020492074, https://openalex.org/W3011459359, https://openalex.org/W2794885170, https://openalex.org/W2499459691, https://openalex.org/W2396881363, https://openalex.org/W3102476541 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 86, 114, 136 |
| abstract_inverted_index.DL | 41, 63 |
| abstract_inverted_index.In | 124 |
| abstract_inverted_index.KG | 50 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.an | 145 |
| abstract_inverted_index.at | 196 |
| abstract_inverted_index.be | 52 |
| abstract_inverted_index.in | 33, 118 |
| abstract_inverted_index.is | 46 |
| abstract_inverted_index.it | 45 |
| abstract_inverted_index.of | 4, 29, 69, 138, 155, 192 |
| abstract_inverted_index.on | 18 |
| abstract_inverted_index.to | 54, 74, 80, 148, 179 |
| abstract_inverted_index.we | 132 |
| abstract_inverted_index.The | 159, 185 |
| abstract_inverted_index.all | 166 |
| abstract_inverted_index.and | 61, 79, 121, 143, 153, 183, 190 |
| abstract_inverted_index.are | 194 |
| abstract_inverted_index.can | 51, 65 |
| abstract_inverted_index.for | 38, 97, 101 |
| abstract_inverted_index.how | 49, 62 |
| abstract_inverted_index.ill | 103 |
| abstract_inverted_index.may | 175 |
| abstract_inverted_index.the | 1, 27, 70, 82, 125, 150, 167 |
| abstract_inverted_index.two | 128 |
| abstract_inverted_index.use | 68 |
| abstract_inverted_index.(DL) | 12 |
| abstract_inverted_index.(KG) | 32 |
| abstract_inverted_index.LSTM | 93 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.also | 25 |
| abstract_inverted_index.both | 119 |
| abstract_inverted_index.deep | 10 |
| abstract_inverted_index.full | 67 |
| abstract_inverted_index.have | 14, 24 |
| abstract_inverted_index.make | 66, 180 |
| abstract_inverted_index.risk | 20, 173 |
| abstract_inverted_index.test | 149 |
| abstract_inverted_index.that | 162 |
| abstract_inverted_index.time | 120 |
| abstract_inverted_index.with | 105, 127, 135 |
| abstract_inverted_index.(EHR) | 8 |
| abstract_inverted_index.Also, | 170 |
| abstract_inverted_index.KGDAL | 96, 112, 134, 163, 193 |
| abstract_inverted_index.acute | 106 |
| abstract_inverted_index.among | 58 |
| abstract_inverted_index.code, | 187 |
| abstract_inverted_index.data, | 9, 189 |
| abstract_inverted_index.graph | 89 |
| abstract_inverted_index.large | 129 |
| abstract_inverted_index.model | 42, 94 |
| abstract_inverted_index.named | 95 |
| abstract_inverted_index.novel | 87 |
| abstract_inverted_index.prior | 36 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.solve | 75 |
| abstract_inverted_index.still | 47 |
| abstract_inverted_index.study | 147 |
| abstract_inverted_index.Recent | 22 |
| abstract_inverted_index.assist | 176 |
| abstract_inverted_index.double | 91 |
| abstract_inverted_index.encode | 55 |
| abstract_inverted_index.graphs | 31 |
| abstract_inverted_index.guided | 90 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.injury | 108 |
| abstract_inverted_index.kidney | 107 |
| abstract_inverted_index.manual | 191 |
| abstract_inverted_index.models | 13, 64, 142 |
| abstract_inverted_index.record | 7 |
| abstract_inverted_index.sample | 188 |
| abstract_inverted_index.showed | 161 |
| abstract_inverted_index.source | 186 |
| abstract_inverted_index.timely | 181 |
| abstract_inverted_index.clearly | 164 |
| abstract_inverted_index.concept | 72 |
| abstract_inverted_index.encoded | 71 |
| abstract_inverted_index.feature | 122 |
| abstract_inverted_index.further | 39 |
| abstract_inverted_index.models. | 169 |
| abstract_inverted_index.patient | 19, 172 |
| abstract_inverted_index.propose | 85 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.rolling | 98, 139 |
| abstract_inverted_index.spaces. | 123 |
| abstract_inverted_index.unclear | 48 |
| abstract_inverted_index.variety | 137 |
| abstract_inverted_index.(AKI-D). | 111 |
| abstract_inverted_index.However, | 44 |
| abstract_inverted_index.KG-based | 115 |
| abstract_inverted_index.ablation | 146 |
| abstract_inverted_index.actions. | 184 |
| abstract_inverted_index.advances | 23 |
| abstract_inverted_index.clinical | 59 |
| abstract_inverted_index.compared | 133, 168 |
| abstract_inverted_index.concepts | 60 |
| abstract_inverted_index.dialysis | 110 |
| abstract_inverted_index.learning | 11 |
| abstract_inverted_index.patients | 104 |
| abstract_inverted_index.problems | 78 |
| abstract_inverted_index.utilized | 53 |
| abstract_inverted_index.valuable | 35 |
| abstract_inverted_index.attention | 92, 117, 157 |
| abstract_inverted_index.available | 195 |
| abstract_inverted_index.conducted | 144 |
| abstract_inverted_index.datasets, | 131 |
| abstract_inverted_index.decisions | 182 |
| abstract_inverted_index.different | 156 |
| abstract_inverted_index.efficacy, | 152 |
| abstract_inverted_index.exhibited | 15 |
| abstract_inverted_index.improving | 40 |
| abstract_inverted_index.interpret | 81 |
| abstract_inverted_index.knowledge | 30, 37, 88 |
| abstract_inverted_index.mortality | 99, 140 |
| abstract_inverted_index.outcomes. | 83 |
| abstract_inverted_index.promising | 16 |
| abstract_inverted_index.providers | 178 |
| abstract_inverted_index.providing | 34 |
| abstract_inverted_index.relations | 57, 73 |
| abstract_inverted_index.requiring | 109 |
| abstract_inverted_index.constructs | 113 |
| abstract_inverted_index.critically | 102 |
| abstract_inverted_index.electronic | 5 |
| abstract_inverted_index.experiment | 126 |
| abstract_inverted_index.healthcare | 77, 130, 177 |
| abstract_inverted_index.high-order | 56 |
| abstract_inverted_index.prediction | 100, 141 |
| abstract_inverted_index.real-world | 76 |
| abstract_inverted_index.mechanisms. | 158 |
| abstract_inverted_index.performance | 17 |
| abstract_inverted_index.prediction. | 21 |
| abstract_inverted_index.accumulation | 3 |
| abstract_inverted_index.contribution | 154 |
| abstract_inverted_index.demonstrated | 26 |
| abstract_inverted_index.outperformed | 165 |
| abstract_inverted_index.performance. | 43 |
| abstract_inverted_index.trajectories | 174 |
| abstract_inverted_index.KGDAL-derived | 171 |
| abstract_inverted_index.effectiveness | 28 |
| abstract_inverted_index.two-dimension | 116 |
| abstract_inverted_index.effectiveness, | 151 |
| abstract_inverted_index.https://github.com/lucasliu0928/KGDAL. | 197 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8700000047683716 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.82527942 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |