Kinase-substrate prediction using an autoregressive model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.csbj.2025.03.003
Kinase-specific phosphorylation plays a critical role in cellular signaling and various diseases. However, even in model organisms, the substrates of most kinases remain unidentified. Currently, there is no reliable method to predict kinase-substrate relationships. In this study, we introduce an innovative approach leveraging an autoregressive model to predict kinase-substrate pairs. Unlike traditional methods focused on predicting site-specific phosphorylation, our approach addresses kinase-specific protein substrate prediction at the protein level. We redefine this problem as a special type of protein-protein interaction prediction task. Our model integrates protein large language model ESM-2 as the encoder and employs an autoregressive decoder to classify protein-kinase interactions in a binary fashion. We adopted a hard negative strategy, based on kinase embedding distances generated from ESM-2, to compel the model to effectively distinguish positive from negative data. We conducted a top‑k analysis to assess how well our model can prioritize the most likely kinase candidates. Our method is also capable of zero-shot prediction, meaning it can predict substrates for a kinase in case of no known substrates, which cannot be achieved by site-specific prediction methods. Our model's robust generalization to novel kinase and underrepresented groups showcases its versatility and broad utility. Code and data are available at https://github.com/farz1995/substrate_kinase_prediction.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.csbj.2025.03.003
- OA Status
- gold
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408254815
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408254815Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.csbj.2025.03.003Digital Object Identifier
- Title
-
Kinase-substrate prediction using an autoregressive modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Farzaneh Esmaili, Yongfang Qin, Duolin Wang, Dong XuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.csbj.2025.03.003Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.csbj.2025.03.003Direct OA link when available
- Concepts
-
Autoregressive model, Substrate (aquarium), Computer science, Biological system, Computational biology, Statistics, Biology, Mathematics, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408254815 |
|---|---|
| doi | https://doi.org/10.1016/j.csbj.2025.03.003 |
| ids.doi | https://doi.org/10.1016/j.csbj.2025.03.003 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40190572 |
| ids.openalex | https://openalex.org/W4408254815 |
| fwci | 0.0 |
| type | article |
| title | Kinase-substrate prediction using an autoregressive model |
| awards[0].id | https://openalex.org/G3823425820 |
| awards[0].funder_id | https://openalex.org/F4320337354 |
| awards[0].display_name | |
| awards[0].funder_award_id | R35-GM126985 |
| awards[0].funder_display_name | National Institute of General Medical Sciences |
| biblio.issue | |
| biblio.volume | 27 |
| biblio.last_page | 1111 |
| biblio.first_page | 1103 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10887 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bioinformatics and Genomic Networks |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337354 |
| funders[1].ror | https://ror.org/04q48ey07 |
| funders[1].display_name | National Institute of General Medical Sciences |
| is_xpac | False |
| apc_list.value | 2450 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2642 |
| apc_paid.value | 2450 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2642 |
| concepts[0].id | https://openalex.org/C159877910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8188905715942383 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[0].display_name | Autoregressive model |
| concepts[1].id | https://openalex.org/C2777289219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6048056483268738 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7632154 |
| concepts[1].display_name | Substrate (aquarium) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4513406753540039 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C186060115 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4063856601715088 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[3].display_name | Biological system |
| concepts[4].id | https://openalex.org/C70721500 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36314210295677185 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[4].display_name | Computational biology |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2676488757133484 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2375163733959198 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23538529872894287 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/autoregressive-model |
| keywords[0].score | 0.8188905715942383 |
| keywords[0].display_name | Autoregressive model |
| keywords[1].id | https://openalex.org/keywords/substrate |
| keywords[1].score | 0.6048056483268738 |
| keywords[1].display_name | Substrate (aquarium) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4513406753540039 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/biological-system |
| keywords[3].score | 0.4063856601715088 |
| keywords[3].display_name | Biological system |
| keywords[4].id | https://openalex.org/keywords/computational-biology |
| keywords[4].score | 0.36314210295677185 |
| keywords[4].display_name | Computational biology |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.2676488757133484 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.2375163733959198 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.23538529872894287 |
| keywords[7].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.csbj.2025.03.003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764539591 |
| locations[0].source.issn | 2001-0370 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2001-0370 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Computational and Structural Biotechnology Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computational and Structural Biotechnology Journal |
| locations[0].landing_page_url | https://doi.org/10.1016/j.csbj.2025.03.003 |
| locations[1].id | pmid:40190572 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Computational and structural biotechnology journal |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40190572 |
| locations[2].id | pmh:oai:doaj.org/article:2f28c31eb28c48a3923ff51bf9962bda |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Computational and Structural Biotechnology Journal, Vol 27, Iss , Pp 1103-1111 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/2f28c31eb28c48a3923ff51bf9962bda |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11968300 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Comput Struct Biotechnol J |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11968300 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5076603704 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0002-7305 |
| authorships[0].author.display_name | Farzaneh Esmaili |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[0].affiliations[0].raw_affiliation_string | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I76835614 |
| authorships[0].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Missouri |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Farzaneh Esmaili |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[1].author.id | https://openalex.org/A5078256470 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yongfang Qin |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[1].affiliations[0].raw_affiliation_string | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I76835614 |
| authorships[1].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Missouri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yongfang Qin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[2].author.id | https://openalex.org/A5003943520 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1649-460X |
| authorships[2].author.display_name | Duolin Wang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[2].affiliations[0].raw_affiliation_string | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I76835614 |
| authorships[2].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Missouri |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Duolin Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[3].author.id | https://openalex.org/A5082428303 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4809-0514 |
| authorships[3].author.display_name | Dong Xu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76835614 |
| authorships[3].affiliations[0].raw_affiliation_string | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| authorships[3].institutions[0].id | https://openalex.org/I76835614 |
| authorships[3].institutions[0].ror | https://ror.org/02ymw8z06 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76835614 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Missouri |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dong Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Data Science and Informatics Institute, Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.csbj.2025.03.003 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Kinase-substrate prediction using an autoregressive model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2171218219, https://openalex.org/W1972271943, https://openalex.org/W2150410159, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.csbj.2025.03.003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764539591 |
| best_oa_location.source.issn | 2001-0370 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2001-0370 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Computational and Structural Biotechnology Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computational and Structural Biotechnology Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.csbj.2025.03.003 |
| primary_location.id | doi:10.1016/j.csbj.2025.03.003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764539591 |
| primary_location.source.issn | 2001-0370 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2001-0370 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Computational and Structural Biotechnology Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computational and Structural Biotechnology Journal |
| primary_location.landing_page_url | https://doi.org/10.1016/j.csbj.2025.03.003 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6864706669, https://openalex.org/W2635415917, https://openalex.org/W2951125349, https://openalex.org/W2601092243, https://openalex.org/W1993571705, https://openalex.org/W4375954646, https://openalex.org/W1538925875, https://openalex.org/W4399088514, https://openalex.org/W3005970532, https://openalex.org/W4365517193, https://openalex.org/W4387767260, https://openalex.org/W2076573118, https://openalex.org/W2155239883, https://openalex.org/W4210871270, https://openalex.org/W2079296957, https://openalex.org/W2810225085, https://openalex.org/W2156125289, https://openalex.org/W4327550249, https://openalex.org/W2030205108, https://openalex.org/W2912820434, https://openalex.org/W4388024559, https://openalex.org/W2118460316, https://openalex.org/W6838541397, https://openalex.org/W1972172786, https://openalex.org/W4399283681, https://openalex.org/W3146944767, https://openalex.org/W2139362357, https://openalex.org/W1981276685, https://openalex.org/W3011725683, https://openalex.org/W2742750032, https://openalex.org/W2795875828, https://openalex.org/W2100984467, https://openalex.org/W1995989434, https://openalex.org/W2099686283, https://openalex.org/W4362471278, https://openalex.org/W4317868880, https://openalex.org/W4391075295, https://openalex.org/W4394998532 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 3, 74, 103, 108, 133, 163 |
| abstract_inverted_index.In | 34 |
| abstract_inverted_index.We | 69, 106, 131 |
| abstract_inverted_index.an | 39, 43, 95 |
| abstract_inverted_index.as | 73, 90 |
| abstract_inverted_index.at | 65, 200 |
| abstract_inverted_index.be | 173 |
| abstract_inverted_index.by | 175 |
| abstract_inverted_index.in | 6, 14, 102, 165 |
| abstract_inverted_index.is | 26, 151 |
| abstract_inverted_index.it | 158 |
| abstract_inverted_index.no | 27, 168 |
| abstract_inverted_index.of | 19, 77, 154, 167 |
| abstract_inverted_index.on | 54, 113 |
| abstract_inverted_index.to | 30, 46, 98, 120, 124, 136, 183 |
| abstract_inverted_index.we | 37 |
| abstract_inverted_index.Our | 82, 149, 179 |
| abstract_inverted_index.and | 9, 93, 186, 192, 196 |
| abstract_inverted_index.are | 198 |
| abstract_inverted_index.can | 142, 159 |
| abstract_inverted_index.for | 162 |
| abstract_inverted_index.how | 138 |
| abstract_inverted_index.its | 190 |
| abstract_inverted_index.our | 58, 140 |
| abstract_inverted_index.the | 17, 66, 91, 122, 144 |
| abstract_inverted_index.Code | 195 |
| abstract_inverted_index.also | 152 |
| abstract_inverted_index.case | 166 |
| abstract_inverted_index.data | 197 |
| abstract_inverted_index.even | 13 |
| abstract_inverted_index.from | 118, 128 |
| abstract_inverted_index.hard | 109 |
| abstract_inverted_index.most | 20, 145 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.this | 35, 71 |
| abstract_inverted_index.type | 76 |
| abstract_inverted_index.well | 139 |
| abstract_inverted_index.ESM-2 | 89 |
| abstract_inverted_index.based | 112 |
| abstract_inverted_index.broad | 193 |
| abstract_inverted_index.data. | 130 |
| abstract_inverted_index.known | 169 |
| abstract_inverted_index.large | 86 |
| abstract_inverted_index.model | 15, 45, 83, 88, 123, 141 |
| abstract_inverted_index.novel | 184 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.task. | 81 |
| abstract_inverted_index.there | 25 |
| abstract_inverted_index.which | 171 |
| abstract_inverted_index.ESM-2, | 119 |
| abstract_inverted_index.Unlike | 50 |
| abstract_inverted_index.assess | 137 |
| abstract_inverted_index.binary | 104 |
| abstract_inverted_index.cannot | 172 |
| abstract_inverted_index.compel | 121 |
| abstract_inverted_index.groups | 188 |
| abstract_inverted_index.kinase | 114, 147, 164, 185 |
| abstract_inverted_index.level. | 68 |
| abstract_inverted_index.likely | 146 |
| abstract_inverted_index.method | 29, 150 |
| abstract_inverted_index.pairs. | 49 |
| abstract_inverted_index.remain | 22 |
| abstract_inverted_index.robust | 181 |
| abstract_inverted_index.study, | 36 |
| abstract_inverted_index.adopted | 107 |
| abstract_inverted_index.capable | 153 |
| abstract_inverted_index.decoder | 97 |
| abstract_inverted_index.employs | 94 |
| abstract_inverted_index.encoder | 92 |
| abstract_inverted_index.focused | 53 |
| abstract_inverted_index.kinases | 21 |
| abstract_inverted_index.meaning | 157 |
| abstract_inverted_index.methods | 52 |
| abstract_inverted_index.model's | 180 |
| abstract_inverted_index.predict | 31, 47, 160 |
| abstract_inverted_index.problem | 72 |
| abstract_inverted_index.protein | 62, 67, 85 |
| abstract_inverted_index.special | 75 |
| abstract_inverted_index.top‑k | 134 |
| abstract_inverted_index.various | 10 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.achieved | 174 |
| abstract_inverted_index.analysis | 135 |
| abstract_inverted_index.approach | 41, 59 |
| abstract_inverted_index.cellular | 7 |
| abstract_inverted_index.classify | 99 |
| abstract_inverted_index.critical | 4 |
| abstract_inverted_index.fashion. | 105 |
| abstract_inverted_index.language | 87 |
| abstract_inverted_index.methods. | 178 |
| abstract_inverted_index.negative | 110, 129 |
| abstract_inverted_index.positive | 127 |
| abstract_inverted_index.redefine | 70 |
| abstract_inverted_index.reliable | 28 |
| abstract_inverted_index.utility. | 194 |
| abstract_inverted_index.addresses | 60 |
| abstract_inverted_index.available | 199 |
| abstract_inverted_index.conducted | 132 |
| abstract_inverted_index.diseases. | 11 |
| abstract_inverted_index.distances | 116 |
| abstract_inverted_index.embedding | 115 |
| abstract_inverted_index.generated | 117 |
| abstract_inverted_index.introduce | 38 |
| abstract_inverted_index.showcases | 189 |
| abstract_inverted_index.signaling | 8 |
| abstract_inverted_index.strategy, | 111 |
| abstract_inverted_index.substrate | 63 |
| abstract_inverted_index.zero-shot | 155 |
| abstract_inverted_index.Currently, | 24 |
| abstract_inverted_index.innovative | 40 |
| abstract_inverted_index.integrates | 84 |
| abstract_inverted_index.leveraging | 42 |
| abstract_inverted_index.organisms, | 16 |
| abstract_inverted_index.predicting | 55 |
| abstract_inverted_index.prediction | 64, 80, 177 |
| abstract_inverted_index.prioritize | 143 |
| abstract_inverted_index.substrates | 18, 161 |
| abstract_inverted_index.candidates. | 148 |
| abstract_inverted_index.distinguish | 126 |
| abstract_inverted_index.effectively | 125 |
| abstract_inverted_index.interaction | 79 |
| abstract_inverted_index.prediction, | 156 |
| abstract_inverted_index.substrates, | 170 |
| abstract_inverted_index.traditional | 51 |
| abstract_inverted_index.versatility | 191 |
| abstract_inverted_index.interactions | 101 |
| abstract_inverted_index.site-specific | 56, 176 |
| abstract_inverted_index.unidentified. | 23 |
| abstract_inverted_index.autoregressive | 44, 96 |
| abstract_inverted_index.generalization | 182 |
| abstract_inverted_index.protein-kinase | 100 |
| abstract_inverted_index.relationships. | 33 |
| abstract_inverted_index.Kinase-specific | 0 |
| abstract_inverted_index.kinase-specific | 61 |
| abstract_inverted_index.phosphorylation | 1 |
| abstract_inverted_index.protein-protein | 78 |
| abstract_inverted_index.kinase-substrate | 32, 48 |
| abstract_inverted_index.phosphorylation, | 57 |
| abstract_inverted_index.underrepresented | 187 |
| abstract_inverted_index.https://github.com/farz1995/substrate_kinase_prediction. | 201 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.08111747 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |