KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/bibm55620.2022.9994931
Rapid accumulation of temporal Electronic Health Record (EHR) data and recent advances in deep learning have shown high potential in precisely and timely predicting patients' risks using AI. However, most existing risk prediction approaches ignore the complex asynchronous and irregular problems in real-world EHR data. This paper proposes a novel approach called Knowledge-guIded Time-aware LSTM (KIT-LSTM) for continuous mortality predictions using EHR. KIT-LSTM extends LSTM with two time-aware gates and a knowledge-aware gate to better model EHR and interprets results. Experiments on real-world data for patients with acute kidney injury with dialysis (AKI-D) demonstrate that KIT-LSTM performs better than the state-of-the-art methods for predicting patients' risk trajectories and model interpretation. KIT-LSTM can better support timely decision-making for clinicians.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/bibm55620.2022.9994931
- OA Status
- green
- Cited By
- 10
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313527324
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313527324Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/bibm55620.2022.9994931Digital Object Identifier
- Title
-
KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk PredictionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-06Full publication date if available
- Authors
-
Lucas J. Liu, Victor Ortiz-Soriano, Javier A. Neyra, Jin ChenList of authors in order
- Landing page
-
https://doi.org/10.1109/bibm55620.2022.9994931Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10151119/pdf/nihms-1893292.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Asynchronous communication, Machine learning, Deep learning, Electronic health record, Health records, Health care, Economics, Economic growth, Computer networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313527324 |
|---|---|
| doi | https://doi.org/10.1109/bibm55620.2022.9994931 |
| ids.doi | https://doi.org/10.1109/bibm55620.2022.9994931 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37131483 |
| ids.openalex | https://openalex.org/W4313527324 |
| fwci | 1.1755504 |
| type | article |
| title | KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction |
| biblio.issue | |
| biblio.volume | 2022 |
| biblio.last_page | 1091 |
| biblio.first_page | 1086 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9666000008583069 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7807650566101074 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6415967345237732 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C151319957 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6049120426177979 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q752739 |
| concepts[2].display_name | Asynchronous communication |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5756604671478271 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.512050449848175 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C3020144179 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48552989959716797 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[5].display_name | Electronic health record |
| concepts[6].id | https://openalex.org/C3019952477 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4768696427345276 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[6].display_name | Health records |
| concepts[7].id | https://openalex.org/C160735492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.10122138261795044 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[7].display_name | Health care |
| concepts[8].id | https://openalex.org/C162324750 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[8].display_name | Economics |
| concepts[9].id | https://openalex.org/C50522688 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[9].display_name | Economic growth |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7807650566101074 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6415967345237732 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/asynchronous-communication |
| keywords[2].score | 0.6049120426177979 |
| keywords[2].display_name | Asynchronous communication |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5756604671478271 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.512050449848175 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/electronic-health-record |
| keywords[5].score | 0.48552989959716797 |
| keywords[5].display_name | Electronic health record |
| keywords[6].id | https://openalex.org/keywords/health-records |
| keywords[6].score | 0.4768696427345276 |
| keywords[6].display_name | Health records |
| keywords[7].id | https://openalex.org/keywords/health-care |
| keywords[7].score | 0.10122138261795044 |
| keywords[7].display_name | Health care |
| language | en |
| locations[0].id | doi:10.1109/bibm55620.2022.9994931 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4363607730 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
| locations[0].landing_page_url | https://doi.org/10.1109/bibm55620.2022.9994931 |
| locations[1].id | pmid:37131483 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Proceedings. IEEE International Conference on Bioinformatics and Biomedicine |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37131483 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10151119 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10151119/pdf/nihms-1893292.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Proceedings (IEEE Int Conf Bioinformatics Biomed) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10151119 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5007370340 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2890-9673 |
| authorships[0].author.display_name | Lucas J. Liu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Kentucky, Lexington, KY, USA |
| authorships[0].institutions[0].id | https://openalex.org/I143302722 |
| authorships[0].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Kentucky |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lucas Jing Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Kentucky, Lexington, KY, USA |
| authorships[1].author.id | https://openalex.org/A5014069097 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8527-6919 |
| authorships[1].author.display_name | Victor Ortiz-Soriano |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210114396 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Brookwood Baptist Health, Birmingham, AL, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210114396 |
| authorships[1].institutions[0].ror | https://ror.org/021998h47 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210114396 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Brookwood Baptist Health |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Victor Ortiz-Soriano |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Internal Medicine, Brookwood Baptist Health, Birmingham, AL, USA |
| authorships[2].author.id | https://openalex.org/A5010644370 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2817-2459 |
| authorships[2].author.display_name | Javier A. Neyra |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Internal Medicine, University of Kentucky, Lexington, KY, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I32389192 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA |
| authorships[2].institutions[0].id | https://openalex.org/I32389192 |
| authorships[2].institutions[0].ror | https://ror.org/008s83205 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I32389192 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Alabama at Birmingham |
| authorships[2].institutions[1].id | https://openalex.org/I143302722 |
| authorships[2].institutions[1].ror | https://ror.org/02k3smh20 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I143302722 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | University of Kentucky |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Javier A. Neyra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA |
| authorships[3].author.id | https://openalex.org/A5100457144 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6076-1141 |
| authorships[3].author.display_name | Jin Chen |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143302722 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Internal Medicine, University of Kentucky, Lexington, KY, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I143302722 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, University of Kentucky, Lexington, KY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I143302722 |
| authorships[3].institutions[0].ror | https://ror.org/02k3smh20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143302722 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Kentucky |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jin Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, University of Kentucky, Lexington, KY, USA, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10151119/pdf/nihms-1893292.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | KIT-LSTM: Knowledge-guided Time-aware LSTM for Continuous Clinical Risk Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W187932805, https://openalex.org/W4392490004, https://openalex.org/W1641026212, https://openalex.org/W2911982698, https://openalex.org/W2323588885, https://openalex.org/W3047677938, https://openalex.org/W2087134418, https://openalex.org/W2078646730, https://openalex.org/W4312053962 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10151119 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10151119/pdf/nihms-1893292.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proceedings (IEEE Int Conf Bioinformatics Biomed) |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10151119 |
| primary_location.id | doi:10.1109/bibm55620.2022.9994931 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4363607730 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) |
| primary_location.landing_page_url | https://doi.org/10.1109/bibm55620.2022.9994931 |
| publication_date | 2022-12-06 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2511950764, https://openalex.org/W3091454251, https://openalex.org/W2606071384, https://openalex.org/W3005219125, https://openalex.org/W2887355428, https://openalex.org/W3000238064, https://openalex.org/W2895763047, https://openalex.org/W2998729982, https://openalex.org/W2915053252, https://openalex.org/W2594685110, https://openalex.org/W2806153517, https://openalex.org/W2064675550, https://openalex.org/W6739901393, https://openalex.org/W2742491462, https://openalex.org/W6729216784, https://openalex.org/W2964010366, https://openalex.org/W6752046673, https://openalex.org/W2888487581, https://openalex.org/W2516809705, https://openalex.org/W6726186668, https://openalex.org/W2964959375, https://openalex.org/W2913240367, https://openalex.org/W6776778177, https://openalex.org/W2557074642, https://openalex.org/W3080318198, https://openalex.org/W3163233738, https://openalex.org/W3111386522, https://openalex.org/W6678830454, https://openalex.org/W2184957013, https://openalex.org/W3003504112, https://openalex.org/W3191090955, https://openalex.org/W3106811464, https://openalex.org/W6782157154, https://openalex.org/W3092326142, https://openalex.org/W2127795553, https://openalex.org/W3022102674, https://openalex.org/W2803805253, https://openalex.org/W2963271116, https://openalex.org/W4287690402, https://openalex.org/W2951305674, https://openalex.org/W4385245566 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 48, 70 |
| abstract_inverted_index.in | 12, 19, 41 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.on | 81 |
| abstract_inverted_index.to | 73 |
| abstract_inverted_index.AI. | 27 |
| abstract_inverted_index.EHR | 43, 76 |
| abstract_inverted_index.and | 9, 21, 38, 69, 77, 107 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.for | 56, 84, 102, 116 |
| abstract_inverted_index.the | 35, 99 |
| abstract_inverted_index.two | 66 |
| abstract_inverted_index.EHR. | 61 |
| abstract_inverted_index.LSTM | 54, 64 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.data | 8, 83 |
| abstract_inverted_index.deep | 13 |
| abstract_inverted_index.gate | 72 |
| abstract_inverted_index.have | 15 |
| abstract_inverted_index.high | 17 |
| abstract_inverted_index.most | 29 |
| abstract_inverted_index.risk | 31, 105 |
| abstract_inverted_index.than | 98 |
| abstract_inverted_index.that | 94 |
| abstract_inverted_index.with | 65, 86, 90 |
| abstract_inverted_index.(EHR) | 7 |
| abstract_inverted_index.Rapid | 0 |
| abstract_inverted_index.acute | 87 |
| abstract_inverted_index.data. | 44 |
| abstract_inverted_index.gates | 68 |
| abstract_inverted_index.model | 75, 108 |
| abstract_inverted_index.novel | 49 |
| abstract_inverted_index.paper | 46 |
| abstract_inverted_index.risks | 25 |
| abstract_inverted_index.shown | 16 |
| abstract_inverted_index.using | 26, 60 |
| abstract_inverted_index.Health | 5 |
| abstract_inverted_index.Record | 6 |
| abstract_inverted_index.better | 74, 97, 112 |
| abstract_inverted_index.called | 51 |
| abstract_inverted_index.ignore | 34 |
| abstract_inverted_index.injury | 89 |
| abstract_inverted_index.kidney | 88 |
| abstract_inverted_index.recent | 10 |
| abstract_inverted_index.timely | 22, 114 |
| abstract_inverted_index.(AKI-D) | 92 |
| abstract_inverted_index.complex | 36 |
| abstract_inverted_index.extends | 63 |
| abstract_inverted_index.methods | 101 |
| abstract_inverted_index.support | 113 |
| abstract_inverted_index.However, | 28 |
| abstract_inverted_index.KIT-LSTM | 62, 95, 110 |
| abstract_inverted_index.advances | 11 |
| abstract_inverted_index.approach | 50 |
| abstract_inverted_index.dialysis | 91 |
| abstract_inverted_index.existing | 30 |
| abstract_inverted_index.learning | 14 |
| abstract_inverted_index.patients | 85 |
| abstract_inverted_index.performs | 96 |
| abstract_inverted_index.problems | 40 |
| abstract_inverted_index.proposes | 47 |
| abstract_inverted_index.results. | 79 |
| abstract_inverted_index.temporal | 3 |
| abstract_inverted_index.irregular | 39 |
| abstract_inverted_index.mortality | 58 |
| abstract_inverted_index.patients' | 24, 104 |
| abstract_inverted_index.potential | 18 |
| abstract_inverted_index.precisely | 20 |
| abstract_inverted_index.(KIT-LSTM) | 55 |
| abstract_inverted_index.Electronic | 4 |
| abstract_inverted_index.Time-aware | 53 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.continuous | 57 |
| abstract_inverted_index.interprets | 78 |
| abstract_inverted_index.predicting | 23, 103 |
| abstract_inverted_index.prediction | 32 |
| abstract_inverted_index.real-world | 42, 82 |
| abstract_inverted_index.time-aware | 67 |
| abstract_inverted_index.Experiments | 80 |
| abstract_inverted_index.clinicians. | 117 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.predictions | 59 |
| abstract_inverted_index.accumulation | 1 |
| abstract_inverted_index.asynchronous | 37 |
| abstract_inverted_index.trajectories | 106 |
| abstract_inverted_index.decision-making | 115 |
| abstract_inverted_index.interpretation. | 109 |
| abstract_inverted_index.knowledge-aware | 71 |
| abstract_inverted_index.Knowledge-guIded | 52 |
| abstract_inverted_index.state-of-the-art | 100 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.79562359 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |