KM-GPT: An Automated Pipeline for Reconstructing Individual Patient Data from Kaplan–Meier Plots Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.09.15.676421
Reconstructing individual patient data (IPD) from Kaplan–Meier (KM) plots provides valuable insights for evidence synthesis in clinical research. However, existing approaches often rely on manual digitization, which is error-prone and lacks scalability. To address these limitations, we develop KM-GPT, the first fully automated, AI-powered pipeline for reconstructing IPD directly from KM plots with high accuracy, robustness, and reproducibility. KM-GPT integrates advanced image preprocessing, multi-modal reasoning powered by GPT-5, and iterative reconstruction algorithms to generate high-quality IPD without manual input or intervention. Its hybrid reasoning architecture automates the conversion of unstructured information into structured data flows and validates data extraction from complex KM plots. To improve accessibility, KM-GPT is equipped with a user-friendly web interface and an integrated AI assistant, enabling researchers to reconstruct IPD without requiring programming expertise. KM-GPT was rigorously evaluated on synthetic and real-world datasets, consistently demonstrating superior accuracy. To illustrate its utility, we applied KM-GPT to a meta-analysis of gastric cancer immunotherapy trials, reconstructing IPD to facilitate evidence synthesis and biomarker-based subgroup analyses. By automating traditionally manual processes and providing a scalable, web-based solution, KM-GPT transforms clinical research by leveraging reconstructed IPD to enable more informed downstream analyses, supporting evidence-based decision-making.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.09.15.676421
- https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdf
- OA Status
- green
- References
- 16
- OpenAlex ID
- https://openalex.org/W4414357342
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414357342Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.09.15.676421Digital Object Identifier
- Title
-
KM-GPT: An Automated Pipeline for Reconstructing Individual Patient Data from Kaplan–Meier PlotsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-19Full publication date if available
- Authors
-
Yaoyao Fiona Zhao, Haili Sun, Y Q Ding, Yanxun XuList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.09.15.676421Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414357342 |
|---|---|
| doi | https://doi.org/10.1101/2025.09.15.676421 |
| ids.doi | https://doi.org/10.1101/2025.09.15.676421 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41000998 |
| ids.openalex | https://openalex.org/W4414357342 |
| fwci | 0.0 |
| type | preprint |
| title | KM-GPT: An Automated Pipeline for Reconstructing Individual Patient Data from Kaplan–Meier Plots |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12859 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.973800003528595 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1304 |
| topics[0].subfield.display_name | Biophysics |
| topics[0].display_name | Cell Image Analysis Techniques |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.968999981880188 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9571999907493591 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1101/2025.09.15.676421 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.09.15.676421 |
| locations[1].id | pmid:41000998 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | bioRxiv : the preprint server for biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41000998 |
| locations[2].id | pmh:oai:europepmc.org:11267070 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12458341 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5070626046 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4927-0514 |
| authorships[0].author.display_name | Yaoyao Fiona Zhao |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[0].institutions[0].id | https://openalex.org/I145311948 |
| authorships[0].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Johns Hopkins University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yao Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins University |
| authorships[1].author.id | https://openalex.org/A5102012565 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0653-3225 |
| authorships[1].author.display_name | Haili Sun |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haoyue Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University |
| authorships[2].author.id | https://openalex.org/A5108270475 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Y Q Ding |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yantian Ding |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University |
| authorships[3].author.id | https://openalex.org/A5056825063 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5554-8637 |
| authorships[3].author.display_name | Yanxun Xu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Johns Hopkins University |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yanxun Xu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Johns Hopkins University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | KM-GPT: An Automated Pipeline for Reconstructing Individual Patient Data from Kaplan–Meier Plots |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12859 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.973800003528595 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1304 |
| primary_topic.subfield.display_name | Biophysics |
| primary_topic.display_name | Cell Image Analysis Techniques |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2025.09.15.676421 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.09.15.676421 |
| primary_location.id | doi:10.1101/2025.09.15.676421 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/09/19/2025.09.15.676421.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.09.15.676421 |
| publication_date | 2025-09-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2014115501, https://openalex.org/W2135422587, https://openalex.org/W2154418622, https://openalex.org/W2075642745, https://openalex.org/W2124847703, https://openalex.org/W2059573268, https://openalex.org/W2106584438, https://openalex.org/W2035632263, https://openalex.org/W4400599257, https://openalex.org/W3163923489, https://openalex.org/W2476548250, https://openalex.org/W4226340788, https://openalex.org/W2806614796, https://openalex.org/W3082736986, https://openalex.org/W3106019786, https://openalex.org/W2897098291 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 111, 150, 174 |
| abstract_inverted_index.AI | 118 |
| abstract_inverted_index.By | 167 |
| abstract_inverted_index.KM | 51, 102 |
| abstract_inverted_index.To | 33, 104, 142 |
| abstract_inverted_index.an | 116 |
| abstract_inverted_index.by | 67, 182 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.is | 28, 108 |
| abstract_inverted_index.of | 89, 152 |
| abstract_inverted_index.on | 24, 133 |
| abstract_inverted_index.or | 80 |
| abstract_inverted_index.to | 73, 122, 149, 159, 186 |
| abstract_inverted_index.we | 37, 146 |
| abstract_inverted_index.IPD | 48, 76, 124, 158, 185 |
| abstract_inverted_index.Its | 82 |
| abstract_inverted_index.and | 30, 57, 69, 96, 115, 135, 163, 172 |
| abstract_inverted_index.for | 13, 46 |
| abstract_inverted_index.its | 144 |
| abstract_inverted_index.the | 40, 87 |
| abstract_inverted_index.was | 130 |
| abstract_inverted_index.web | 113 |
| abstract_inverted_index.(KM) | 8 |
| abstract_inverted_index.data | 4, 94, 98 |
| abstract_inverted_index.from | 6, 50, 100 |
| abstract_inverted_index.high | 54 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.more | 188 |
| abstract_inverted_index.rely | 23 |
| abstract_inverted_index.with | 53, 110 |
| abstract_inverted_index.(IPD) | 5 |
| abstract_inverted_index.first | 41 |
| abstract_inverted_index.flows | 95 |
| abstract_inverted_index.fully | 42 |
| abstract_inverted_index.image | 62 |
| abstract_inverted_index.input | 79 |
| abstract_inverted_index.lacks | 31 |
| abstract_inverted_index.often | 22 |
| abstract_inverted_index.plots | 9, 52 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.GPT-5, | 68 |
| abstract_inverted_index.KM-GPT | 59, 107, 129, 148, 178 |
| abstract_inverted_index.cancer | 154 |
| abstract_inverted_index.enable | 187 |
| abstract_inverted_index.hybrid | 83 |
| abstract_inverted_index.manual | 25, 78, 170 |
| abstract_inverted_index.plots. | 103 |
| abstract_inverted_index.KM-GPT, | 39 |
| abstract_inverted_index.address | 34 |
| abstract_inverted_index.applied | 147 |
| abstract_inverted_index.complex | 101 |
| abstract_inverted_index.develop | 38 |
| abstract_inverted_index.gastric | 153 |
| abstract_inverted_index.improve | 105 |
| abstract_inverted_index.patient | 3 |
| abstract_inverted_index.powered | 66 |
| abstract_inverted_index.trials, | 156 |
| abstract_inverted_index.without | 77, 125 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.advanced | 61 |
| abstract_inverted_index.clinical | 17, 180 |
| abstract_inverted_index.directly | 49 |
| abstract_inverted_index.enabling | 120 |
| abstract_inverted_index.equipped | 109 |
| abstract_inverted_index.evidence | 14, 161 |
| abstract_inverted_index.existing | 20 |
| abstract_inverted_index.generate | 74 |
| abstract_inverted_index.informed | 189 |
| abstract_inverted_index.insights | 12 |
| abstract_inverted_index.pipeline | 45 |
| abstract_inverted_index.provides | 10 |
| abstract_inverted_index.research | 181 |
| abstract_inverted_index.subgroup | 165 |
| abstract_inverted_index.superior | 140 |
| abstract_inverted_index.utility, | 145 |
| abstract_inverted_index.valuable | 11 |
| abstract_inverted_index.accuracy, | 55 |
| abstract_inverted_index.accuracy. | 141 |
| abstract_inverted_index.analyses, | 191 |
| abstract_inverted_index.analyses. | 166 |
| abstract_inverted_index.automates | 86 |
| abstract_inverted_index.datasets, | 137 |
| abstract_inverted_index.evaluated | 132 |
| abstract_inverted_index.interface | 114 |
| abstract_inverted_index.iterative | 70 |
| abstract_inverted_index.processes | 171 |
| abstract_inverted_index.providing | 173 |
| abstract_inverted_index.reasoning | 65, 84 |
| abstract_inverted_index.requiring | 126 |
| abstract_inverted_index.research. | 18 |
| abstract_inverted_index.scalable, | 175 |
| abstract_inverted_index.solution, | 177 |
| abstract_inverted_index.synthesis | 15, 162 |
| abstract_inverted_index.synthetic | 134 |
| abstract_inverted_index.validates | 97 |
| abstract_inverted_index.web-based | 176 |
| abstract_inverted_index.AI-powered | 44 |
| abstract_inverted_index.algorithms | 72 |
| abstract_inverted_index.approaches | 21 |
| abstract_inverted_index.assistant, | 119 |
| abstract_inverted_index.automated, | 43 |
| abstract_inverted_index.automating | 168 |
| abstract_inverted_index.conversion | 88 |
| abstract_inverted_index.downstream | 190 |
| abstract_inverted_index.expertise. | 128 |
| abstract_inverted_index.extraction | 99 |
| abstract_inverted_index.facilitate | 160 |
| abstract_inverted_index.illustrate | 143 |
| abstract_inverted_index.individual | 2 |
| abstract_inverted_index.integrated | 117 |
| abstract_inverted_index.integrates | 60 |
| abstract_inverted_index.leveraging | 183 |
| abstract_inverted_index.real-world | 136 |
| abstract_inverted_index.rigorously | 131 |
| abstract_inverted_index.structured | 93 |
| abstract_inverted_index.supporting | 192 |
| abstract_inverted_index.transforms | 179 |
| abstract_inverted_index.error-prone | 29 |
| abstract_inverted_index.information | 91 |
| abstract_inverted_index.multi-modal | 64 |
| abstract_inverted_index.programming | 127 |
| abstract_inverted_index.reconstruct | 123 |
| abstract_inverted_index.researchers | 121 |
| abstract_inverted_index.robustness, | 56 |
| abstract_inverted_index.architecture | 85 |
| abstract_inverted_index.consistently | 138 |
| abstract_inverted_index.high-quality | 75 |
| abstract_inverted_index.limitations, | 36 |
| abstract_inverted_index.scalability. | 32 |
| abstract_inverted_index.unstructured | 90 |
| abstract_inverted_index.demonstrating | 139 |
| abstract_inverted_index.digitization, | 26 |
| abstract_inverted_index.immunotherapy | 155 |
| abstract_inverted_index.intervention. | 81 |
| abstract_inverted_index.meta-analysis | 151 |
| abstract_inverted_index.reconstructed | 184 |
| abstract_inverted_index.traditionally | 169 |
| abstract_inverted_index.user-friendly | 112 |
| abstract_inverted_index.Kaplan–Meier | 7 |
| abstract_inverted_index.Reconstructing | 1 |
| abstract_inverted_index.accessibility, | 106 |
| abstract_inverted_index.evidence-based | 193 |
| abstract_inverted_index.preprocessing, | 63 |
| abstract_inverted_index.reconstructing | 47, 157 |
| abstract_inverted_index.reconstruction | 71 |
| abstract_inverted_index.biomarker-based | 164 |
| abstract_inverted_index.decision-making. | 194 |
| abstract_inverted_index.reproducibility. | 58 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5056825063 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I145311948 |
| citation_normalized_percentile.value | 0.29470018 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |