KNN Euclidean Distance Model Performance on Aquilaria Malaccensis Oil Qualities Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.37934/araset.48.2.1628
Agarwood is a highly prized and useful forest product. In Southeast Asia, Aquilaria Malaccensis species are typically the most prevalent. This agarwood is usually used in the manufacture of medicine, the production of high-quality perfumes, and is also used in religious and ethnic ceremonies. According to the study, the agarwood grading process entirely relies on human senses. The graders will evaluate the agarwood oil's color concentration with their unaided eyes and evaluate the amount of scent emitted with their noses. This approach has been proven to have several limitations, including that the graders' health will suffer, the grading procedure will take a very long time, and will consume high operating expenses. Therefore, an established standard grading model that is faster, easier, and more accurate needs to be introduced. Previous researchers found that chemical compounds contained in agarwood oil can be used to grade the quality of agarwood oil. Therefore, this study has used the data obtained that contains significant chemical compounds as input to develop a grading model with the support of machine learning and artificial intelligence, which is the k-Nearest Neighbor (KNN) technique. The output of this grading model is the classification of agarwood oil according to its quality, which includes four different grades. The results of the implementation of KNN grading of this model found that this model has very excellent performance by obtaining 100% for each measurement for the performance evaluator of the classifier.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.37934/araset.48.2.1628
- OA Status
- hybrid
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400800390
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400800390Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.37934/araset.48.2.1628Digital Object Identifier
- Title
-
KNN Euclidean Distance Model Performance on Aquilaria Malaccensis Oil QualitiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-18Full publication date if available
- Authors
-
Aqib Fawwaz Mohd Amidon, Zakiah Mohd Yusoff, Nurlaila Ismail, Mohd Nasir TaibList of authors in order
- Landing page
-
https://doi.org/10.37934/araset.48.2.1628Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.37934/araset.48.2.1628Direct OA link when available
- Concepts
-
Euclidean distance, Mathematics, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400800390 |
|---|---|
| doi | https://doi.org/10.37934/araset.48.2.1628 |
| ids.doi | https://doi.org/10.37934/araset.48.2.1628 |
| ids.openalex | https://openalex.org/W4400800390 |
| fwci | 1.74274036 |
| type | article |
| title | KNN Euclidean Distance Model Performance on Aquilaria Malaccensis Oil Qualities |
| biblio.issue | 2 |
| biblio.volume | 48 |
| biblio.last_page | 28 |
| biblio.first_page | 16 |
| topics[0].id | https://openalex.org/T13568 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1605 |
| topics[0].subfield.display_name | Organic Chemistry |
| topics[0].display_name | Wood and Agarwood Research |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.95660001039505 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11411 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9542999863624573 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2734 |
| topics[2].subfield.display_name | Pathology and Forensic Medicine |
| topics[2].display_name | Tea Polyphenols and Effects |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C120174047 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5155724883079529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[0].display_name | Euclidean distance |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.45949840545654297 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.36382436752319336 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.27175724506378174 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/euclidean-distance |
| keywords[0].score | 0.5155724883079529 |
| keywords[0].display_name | Euclidean distance |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.45949840545654297 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.36382436752319336 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.27175724506378174 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.37934/araset.48.2.1628 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210199797 |
| locations[0].source.issn | 2462-1943 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2462-1943 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| locations[0].landing_page_url | https://doi.org/10.37934/araset.48.2.1628 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5090145065 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3786-043X |
| authorships[0].author.display_name | Aqib Fawwaz Mohd Amidon |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Aqib Fawwaz Mohd Amidon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5027356897 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1865-0856 |
| authorships[1].author.display_name | Zakiah Mohd Yusoff |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Zakiah Mohd Yusoff |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5111262084 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nurlaila Ismail |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | None Nurlaila Ismail |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059748399 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1050-3341 |
| authorships[3].author.display_name | Mohd Nasir Taib |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | None Mohd Nasir Taib |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.37934/araset.48.2.1628 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | KNN Euclidean Distance Model Performance on Aquilaria Malaccensis Oil Qualities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13568 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1605 |
| primary_topic.subfield.display_name | Organic Chemistry |
| primary_topic.display_name | Wood and Agarwood Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W4391375266, https://openalex.org/W1979597421, https://openalex.org/W2007980826, https://openalex.org/W2061531152, https://openalex.org/W3002753104, https://openalex.org/W2077600819, https://openalex.org/W2142036596, https://openalex.org/W2072657027, https://openalex.org/W2600246793 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.37934/araset.48.2.1628 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210199797 |
| best_oa_location.source.issn | 2462-1943 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2462-1943 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| best_oa_location.landing_page_url | https://doi.org/10.37934/araset.48.2.1628 |
| primary_location.id | doi:10.37934/araset.48.2.1628 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210199797 |
| primary_location.source.issn | 2462-1943 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2462-1943 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Advanced Research in Applied Sciences and Engineering Technology |
| primary_location.landing_page_url | https://doi.org/10.37934/araset.48.2.1628 |
| publication_date | 2024-07-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 101, 165 |
| abstract_inverted_index.In | 9 |
| abstract_inverted_index.an | 112 |
| abstract_inverted_index.as | 161 |
| abstract_inverted_index.be | 126, 139 |
| abstract_inverted_index.by | 224 |
| abstract_inverted_index.in | 25, 39, 135 |
| abstract_inverted_index.is | 1, 22, 36, 118, 178, 190 |
| abstract_inverted_index.of | 28, 32, 74, 145, 171, 186, 193, 207, 210, 213, 234 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.to | 45, 85, 125, 141, 163, 197 |
| abstract_inverted_index.KNN | 211 |
| abstract_inverted_index.The | 57, 184, 205 |
| abstract_inverted_index.and | 5, 35, 41, 70, 105, 121, 174 |
| abstract_inverted_index.are | 15 |
| abstract_inverted_index.can | 138 |
| abstract_inverted_index.for | 227, 230 |
| abstract_inverted_index.has | 82, 151, 220 |
| abstract_inverted_index.its | 198 |
| abstract_inverted_index.oil | 137, 195 |
| abstract_inverted_index.the | 17, 26, 30, 46, 48, 61, 72, 91, 96, 143, 153, 169, 179, 191, 208, 231, 235 |
| abstract_inverted_index.100% | 226 |
| abstract_inverted_index.This | 20, 80 |
| abstract_inverted_index.also | 37 |
| abstract_inverted_index.been | 83 |
| abstract_inverted_index.data | 154 |
| abstract_inverted_index.each | 228 |
| abstract_inverted_index.eyes | 69 |
| abstract_inverted_index.four | 202 |
| abstract_inverted_index.have | 86 |
| abstract_inverted_index.high | 108 |
| abstract_inverted_index.long | 103 |
| abstract_inverted_index.more | 122 |
| abstract_inverted_index.most | 18 |
| abstract_inverted_index.oil. | 147 |
| abstract_inverted_index.take | 100 |
| abstract_inverted_index.that | 90, 117, 131, 156, 217 |
| abstract_inverted_index.this | 149, 187, 214, 218 |
| abstract_inverted_index.used | 24, 38, 140, 152 |
| abstract_inverted_index.very | 102, 221 |
| abstract_inverted_index.will | 59, 94, 99, 106 |
| abstract_inverted_index.with | 66, 77, 168 |
| abstract_inverted_index.(KNN) | 182 |
| abstract_inverted_index.Asia, | 11 |
| abstract_inverted_index.color | 64 |
| abstract_inverted_index.found | 130, 216 |
| abstract_inverted_index.grade | 142 |
| abstract_inverted_index.human | 55 |
| abstract_inverted_index.input | 162 |
| abstract_inverted_index.model | 116, 167, 189, 215, 219 |
| abstract_inverted_index.needs | 124 |
| abstract_inverted_index.oil's | 63 |
| abstract_inverted_index.scent | 75 |
| abstract_inverted_index.study | 150 |
| abstract_inverted_index.their | 67, 78 |
| abstract_inverted_index.time, | 104 |
| abstract_inverted_index.which | 177, 200 |
| abstract_inverted_index.amount | 73 |
| abstract_inverted_index.ethnic | 42 |
| abstract_inverted_index.forest | 7 |
| abstract_inverted_index.health | 93 |
| abstract_inverted_index.highly | 3 |
| abstract_inverted_index.noses. | 79 |
| abstract_inverted_index.output | 185 |
| abstract_inverted_index.prized | 4 |
| abstract_inverted_index.proven | 84 |
| abstract_inverted_index.relies | 53 |
| abstract_inverted_index.study, | 47 |
| abstract_inverted_index.useful | 6 |
| abstract_inverted_index.consume | 107 |
| abstract_inverted_index.develop | 164 |
| abstract_inverted_index.easier, | 120 |
| abstract_inverted_index.emitted | 76 |
| abstract_inverted_index.faster, | 119 |
| abstract_inverted_index.graders | 58 |
| abstract_inverted_index.grades. | 204 |
| abstract_inverted_index.grading | 50, 97, 115, 166, 188, 212 |
| abstract_inverted_index.machine | 172 |
| abstract_inverted_index.process | 51 |
| abstract_inverted_index.quality | 144 |
| abstract_inverted_index.results | 206 |
| abstract_inverted_index.senses. | 56 |
| abstract_inverted_index.several | 87 |
| abstract_inverted_index.species | 14 |
| abstract_inverted_index.suffer, | 95 |
| abstract_inverted_index.support | 170 |
| abstract_inverted_index.unaided | 68 |
| abstract_inverted_index.usually | 23 |
| abstract_inverted_index.Agarwood | 0 |
| abstract_inverted_index.Neighbor | 181 |
| abstract_inverted_index.Previous | 128 |
| abstract_inverted_index.accurate | 123 |
| abstract_inverted_index.agarwood | 21, 49, 62, 136, 146, 194 |
| abstract_inverted_index.approach | 81 |
| abstract_inverted_index.chemical | 132, 159 |
| abstract_inverted_index.contains | 157 |
| abstract_inverted_index.entirely | 52 |
| abstract_inverted_index.evaluate | 60, 71 |
| abstract_inverted_index.graders' | 92 |
| abstract_inverted_index.includes | 201 |
| abstract_inverted_index.learning | 173 |
| abstract_inverted_index.obtained | 155 |
| abstract_inverted_index.product. | 8 |
| abstract_inverted_index.quality, | 199 |
| abstract_inverted_index.standard | 114 |
| abstract_inverted_index.According | 44 |
| abstract_inverted_index.Aquilaria | 12 |
| abstract_inverted_index.Southeast | 10 |
| abstract_inverted_index.according | 196 |
| abstract_inverted_index.compounds | 133, 160 |
| abstract_inverted_index.contained | 134 |
| abstract_inverted_index.different | 203 |
| abstract_inverted_index.evaluator | 233 |
| abstract_inverted_index.excellent | 222 |
| abstract_inverted_index.expenses. | 110 |
| abstract_inverted_index.including | 89 |
| abstract_inverted_index.k-Nearest | 180 |
| abstract_inverted_index.medicine, | 29 |
| abstract_inverted_index.obtaining | 225 |
| abstract_inverted_index.operating | 109 |
| abstract_inverted_index.perfumes, | 34 |
| abstract_inverted_index.procedure | 98 |
| abstract_inverted_index.religious | 40 |
| abstract_inverted_index.typically | 16 |
| abstract_inverted_index.Therefore, | 111, 148 |
| abstract_inverted_index.artificial | 175 |
| abstract_inverted_index.prevalent. | 19 |
| abstract_inverted_index.production | 31 |
| abstract_inverted_index.technique. | 183 |
| abstract_inverted_index.Malaccensis | 13 |
| abstract_inverted_index.ceremonies. | 43 |
| abstract_inverted_index.classifier. | 236 |
| abstract_inverted_index.established | 113 |
| abstract_inverted_index.introduced. | 127 |
| abstract_inverted_index.manufacture | 27 |
| abstract_inverted_index.measurement | 229 |
| abstract_inverted_index.performance | 223, 232 |
| abstract_inverted_index.researchers | 129 |
| abstract_inverted_index.significant | 158 |
| abstract_inverted_index.high-quality | 33 |
| abstract_inverted_index.limitations, | 88 |
| abstract_inverted_index.concentration | 65 |
| abstract_inverted_index.intelligence, | 176 |
| abstract_inverted_index.classification | 192 |
| abstract_inverted_index.implementation | 209 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.7901937 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |