Knowledge Graph: Applications in Tracing the Source of Large-Scale Outbreak — Beijing Municipality, China, 2020–2021 Article Swipe
Ying Shen
,
Yonghong Liu
,
Xiaokang Jiao
,
Yuxin Cai
,
Xiang Xu
,
Hui Yao
,
Xiaoli Wang
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.46234/ccdcw2023.017
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.46234/ccdcw2023.017
The KG model is a promising tool for predicting and controlling future COVID-19 epidemic waves and other infectious disease pandemics. By automatically inferring the source of infection, limited resources can be used efficiently to detect potential risks, allowing for rapid outbreak control.
Related Topics
Concepts
Outbreak
Beijing
Contact tracing
Tracing
Transmission (telecommunications)
Inference
Pandemic
China
Graph
Infectious disease (medical specialty)
Computer science
Coronavirus disease 2019 (COVID-19)
Geography
Virology
Disease
Biology
Medicine
Artificial intelligence
Theoretical computer science
Telecommunications
Archaeology
Operating system
Pathology
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.46234/ccdcw2023.017
- https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017
- OA Status
- diamond
- Cited By
- 2
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318191021
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318191021Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.46234/ccdcw2023.017Digital Object Identifier
- Title
-
Knowledge Graph: Applications in Tracing the Source of Large-Scale Outbreak — Beijing Municipality, China, 2020–2021Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Ying Shen, Yonghong Liu, Xiaokang Jiao, Yuxin Cai, Xiang Xu, Hui Yao, Xiaoli WangList of authors in order
- Landing page
-
https://doi.org/10.46234/ccdcw2023.017Publisher landing page
- PDF URL
-
https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017Direct OA link when available
- Concepts
-
Outbreak, Beijing, Contact tracing, Tracing, Transmission (telecommunications), Inference, Pandemic, China, Graph, Infectious disease (medical specialty), Computer science, Coronavirus disease 2019 (COVID-19), Geography, Virology, Disease, Biology, Medicine, Artificial intelligence, Theoretical computer science, Telecommunications, Archaeology, Operating system, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318191021 |
|---|---|
| doi | https://doi.org/10.46234/ccdcw2023.017 |
| ids.doi | https://doi.org/10.46234/ccdcw2023.017 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36777898 |
| ids.openalex | https://openalex.org/W4318191021 |
| fwci | 0.70610879 |
| type | article |
| title | Knowledge Graph: Applications in Tracing the Source of Large-Scale Outbreak — Beijing Municipality, China, 2020–2021 |
| biblio.issue | 4 |
| biblio.volume | 5 |
| biblio.last_page | 95 |
| biblio.first_page | 90 |
| topics[0].id | https://openalex.org/T11819 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Data-Driven Disease Surveillance |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9825000166893005 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10410 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9703999757766724 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2611 |
| topics[2].subfield.display_name | Modeling and Simulation |
| topics[2].display_name | COVID-19 epidemiological studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C116675565 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9077686071395874 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3241045 |
| concepts[0].display_name | Outbreak |
| concepts[1].id | https://openalex.org/C2778304055 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8072157502174377 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q657474 |
| concepts[1].display_name | Beijing |
| concepts[2].id | https://openalex.org/C113162765 |
| concepts[2].level | 5 |
| concepts[2].score | 0.7126959562301636 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1128437 |
| concepts[2].display_name | Contact tracing |
| concepts[3].id | https://openalex.org/C138673069 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5955676436424255 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q322229 |
| concepts[3].display_name | Tracing |
| concepts[4].id | https://openalex.org/C761482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5420762300491333 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[4].display_name | Transmission (telecommunications) |
| concepts[5].id | https://openalex.org/C2776214188 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5346317291259766 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[5].display_name | Inference |
| concepts[6].id | https://openalex.org/C89623803 |
| concepts[6].level | 5 |
| concepts[6].score | 0.4605857729911804 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12184 |
| concepts[6].display_name | Pandemic |
| concepts[7].id | https://openalex.org/C191935318 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4460516571998596 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[7].display_name | China |
| concepts[8].id | https://openalex.org/C132525143 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43850409984588623 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[8].display_name | Graph |
| concepts[9].id | https://openalex.org/C524204448 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42371416091918945 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[9].display_name | Infectious disease (medical specialty) |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4102734923362732 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C3008058167 |
| concepts[11].level | 4 |
| concepts[11].score | 0.39038801193237305 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[11].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.35452190041542053 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C159047783 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3449947237968445 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[13].display_name | Virology |
| concepts[14].id | https://openalex.org/C2779134260 |
| concepts[14].level | 2 |
| concepts[14].score | 0.26554983854293823 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[14].display_name | Disease |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.20392310619354248 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.19964882731437683 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C154945302 |
| concepts[17].level | 1 |
| concepts[17].score | 0.16726472973823547 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[17].display_name | Artificial intelligence |
| concepts[18].id | https://openalex.org/C80444323 |
| concepts[18].level | 1 |
| concepts[18].score | 0.13391822576522827 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[18].display_name | Theoretical computer science |
| concepts[19].id | https://openalex.org/C76155785 |
| concepts[19].level | 1 |
| concepts[19].score | 0.10435876250267029 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[19].display_name | Telecommunications |
| concepts[20].id | https://openalex.org/C166957645 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[20].display_name | Archaeology |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| concepts[22].id | https://openalex.org/C142724271 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[22].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/outbreak |
| keywords[0].score | 0.9077686071395874 |
| keywords[0].display_name | Outbreak |
| keywords[1].id | https://openalex.org/keywords/beijing |
| keywords[1].score | 0.8072157502174377 |
| keywords[1].display_name | Beijing |
| keywords[2].id | https://openalex.org/keywords/contact-tracing |
| keywords[2].score | 0.7126959562301636 |
| keywords[2].display_name | Contact tracing |
| keywords[3].id | https://openalex.org/keywords/tracing |
| keywords[3].score | 0.5955676436424255 |
| keywords[3].display_name | Tracing |
| keywords[4].id | https://openalex.org/keywords/transmission |
| keywords[4].score | 0.5420762300491333 |
| keywords[4].display_name | Transmission (telecommunications) |
| keywords[5].id | https://openalex.org/keywords/inference |
| keywords[5].score | 0.5346317291259766 |
| keywords[5].display_name | Inference |
| keywords[6].id | https://openalex.org/keywords/pandemic |
| keywords[6].score | 0.4605857729911804 |
| keywords[6].display_name | Pandemic |
| keywords[7].id | https://openalex.org/keywords/china |
| keywords[7].score | 0.4460516571998596 |
| keywords[7].display_name | China |
| keywords[8].id | https://openalex.org/keywords/graph |
| keywords[8].score | 0.43850409984588623 |
| keywords[8].display_name | Graph |
| keywords[9].id | https://openalex.org/keywords/infectious-disease |
| keywords[9].score | 0.42371416091918945 |
| keywords[9].display_name | Infectious disease (medical specialty) |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.4102734923362732 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[11].score | 0.39038801193237305 |
| keywords[11].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.35452190041542053 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/virology |
| keywords[13].score | 0.3449947237968445 |
| keywords[13].display_name | Virology |
| keywords[14].id | https://openalex.org/keywords/disease |
| keywords[14].score | 0.26554983854293823 |
| keywords[14].display_name | Disease |
| keywords[15].id | https://openalex.org/keywords/biology |
| keywords[15].score | 0.20392310619354248 |
| keywords[15].display_name | Biology |
| keywords[16].id | https://openalex.org/keywords/medicine |
| keywords[16].score | 0.19964882731437683 |
| keywords[16].display_name | Medicine |
| keywords[17].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[17].score | 0.16726472973823547 |
| keywords[17].display_name | Artificial intelligence |
| keywords[18].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[18].score | 0.13391822576522827 |
| keywords[18].display_name | Theoretical computer science |
| keywords[19].id | https://openalex.org/keywords/telecommunications |
| keywords[19].score | 0.10435876250267029 |
| keywords[19].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.46234/ccdcw2023.017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210197603 |
| locations[0].source.issn | 2096-7071, 2097-3101 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-7071 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | China CDC Weekly |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | China CDC Weekly |
| locations[0].landing_page_url | https://doi.org/10.46234/ccdcw2023.017 |
| locations[1].id | pmid:36777898 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | China CDC weekly |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36777898 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9902760 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | China CDC Wkly |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9902760 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5054755045 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1011-6950 |
| authorships[0].author.display_name | Ying Shen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210161151 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[0].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ying Shen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[1].author.id | https://openalex.org/A5100620734 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4432-9433 |
| authorships[1].author.display_name | Yonghong Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210161151 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[1].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[1].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yonghong Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[2].author.id | https://openalex.org/A5059379860 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2393-1310 |
| authorships[2].author.display_name | Xiaokang Jiao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144487 |
| authorships[2].affiliations[0].raw_affiliation_string | Yidu Cloud Technology Co Ltd, Beijing, China. |
| authorships[2].institutions[0].id | https://openalex.org/I4210144487 |
| authorships[2].institutions[0].ror | https://ror.org/04aa0zm65 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210144487 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Cloud Computing Center |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaokang Jiao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Yidu Cloud Technology Co Ltd, Beijing, China. |
| authorships[3].author.id | https://openalex.org/A5100744837 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-8452-4479 |
| authorships[3].author.display_name | Yuxin Cai |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210161151 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[3].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[3].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuxin Cai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[4].author.id | https://openalex.org/A5100547688 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Xiang Xu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210161151 |
| authorships[4].affiliations[0].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[4].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[4].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Xiang Xu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[5].author.id | https://openalex.org/A5112962803 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Hui Yao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210161151 |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[5].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[5].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hui Yao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[6].author.id | https://openalex.org/A5100456900 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3128-649X |
| authorships[6].author.display_name | Xiaoli Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I183519381 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Public Health, Capital Medical University, Beijing, China. |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210161151 |
| authorships[6].affiliations[1].raw_affiliation_string | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China. |
| authorships[6].institutions[0].id | https://openalex.org/I4210161151 |
| authorships[6].institutions[0].ror | https://ror.org/058dc0w16 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210161151 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Beijing Center for Disease Prevention and Control |
| authorships[6].institutions[1].id | https://openalex.org/I183519381 |
| authorships[6].institutions[1].ror | https://ror.org/013xs5b60 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I183519381 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Capital Medical University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Xiaoli Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Beijing Office of Global Health, Beijing Center for Disease Prevention and Control, Beijing, China., School of Public Health, Capital Medical University, Beijing, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Knowledge Graph: Applications in Tracing the Source of Large-Scale Outbreak — Beijing Municipality, China, 2020–2021 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11819 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Data-Driven Disease Surveillance |
| related_works | https://openalex.org/W3008294222, https://openalex.org/W3005722800, https://openalex.org/W1506738242, https://openalex.org/W3130120175, https://openalex.org/W3204046685, https://openalex.org/W4205699833, https://openalex.org/W4304690295, https://openalex.org/W3169409437, https://openalex.org/W3128626811, https://openalex.org/W3015379603 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.46234/ccdcw2023.017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210197603 |
| best_oa_location.source.issn | 2096-7071, 2097-3101 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-7071 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | China CDC Weekly |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | China CDC Weekly |
| best_oa_location.landing_page_url | https://doi.org/10.46234/ccdcw2023.017 |
| primary_location.id | doi:10.46234/ccdcw2023.017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210197603 |
| primary_location.source.issn | 2096-7071, 2097-3101 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-7071 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | China CDC Weekly |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://weekly.chinacdc.cn/en/article/pdf/preview/10.46234/ccdcw2023.017 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | China CDC Weekly |
| primary_location.landing_page_url | https://doi.org/10.46234/ccdcw2023.017 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3202281227, https://openalex.org/W3088646411, https://openalex.org/W3215209054, https://openalex.org/W3185914370, https://openalex.org/W3095917485, https://openalex.org/W3158236767, https://openalex.org/W4285810166, https://openalex.org/W4292676638, https://openalex.org/W3118409314 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 4 |
| abstract_inverted_index.By | 20 |
| abstract_inverted_index.KG | 1 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 25 |
| abstract_inverted_index.to | 33 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 9, 15 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 7, 38 |
| abstract_inverted_index.the | 23 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.used | 31 |
| abstract_inverted_index.model | 2 |
| abstract_inverted_index.other | 16 |
| abstract_inverted_index.rapid | 39 |
| abstract_inverted_index.waves | 14 |
| abstract_inverted_index.detect | 34 |
| abstract_inverted_index.future | 11 |
| abstract_inverted_index.risks, | 36 |
| abstract_inverted_index.source | 24 |
| abstract_inverted_index.disease | 18 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.COVID-19 | 12 |
| abstract_inverted_index.allowing | 37 |
| abstract_inverted_index.control. | 41 |
| abstract_inverted_index.epidemic | 13 |
| abstract_inverted_index.outbreak | 40 |
| abstract_inverted_index.inferring | 22 |
| abstract_inverted_index.potential | 35 |
| abstract_inverted_index.promising | 5 |
| abstract_inverted_index.resources | 28 |
| abstract_inverted_index.infection, | 26 |
| abstract_inverted_index.infectious | 17 |
| abstract_inverted_index.pandemics. | 19 |
| abstract_inverted_index.predicting | 8 |
| abstract_inverted_index.controlling | 10 |
| abstract_inverted_index.efficiently | 32 |
| abstract_inverted_index.automatically | 21 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.65640394 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |