Knowledge Guided Two-player Reinforcement Learning for Cyber Attacks and Defenses Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/icmla55696.2022.00213
Cyber defense exercises are an important avenue to understand the technical capacity of organizations when faced with cyber-threats. Information derived from these exercises often leads to finding unseen methods to exploit vulnerabilities in an organization. These often lead to better defense mechanisms that can counter previously unknown exploits. With recent developments in cyber battle simulation platforms, we can generate a defense exercise environment and train reinforcement learning (RL) based autonomous agents to attack the system described by the simulated environment. In this paper, we describe a two-player game-based RL environment that simultaneously improves the performance of both the attacker and defender agents. We further accelerate the convergence of the RL agents by guiding them with expert knowledge from Cybersecurity Knowledge Graphs on attack and mitigation steps. We have implemented and integrated our proposed approaches into the CyberBattleSim system.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icmla55696.2022.00213
- OA Status
- green
- Cited By
- 10
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4360764596
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4360764596Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icmla55696.2022.00213Digital Object Identifier
- Title
-
Knowledge Guided Two-player Reinforcement Learning for Cyber Attacks and DefensesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-01Full publication date if available
- Authors
-
Aritran Piplai, Mike Anoruo, Kayode Fasaye, Anupam Joshi, Tim Finin, Ahmad RidleyList of authors in order
- Landing page
-
https://doi.org/10.1109/icmla55696.2022.00213Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11603/26478Direct OA link when available
- Concepts
-
Exploit, Reinforcement learning, Computer science, Computer security, Convergence (economics), Battle, Human–computer interaction, Artificial intelligence, History, Economics, Archaeology, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 7, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4360764596 |
|---|---|
| doi | https://doi.org/10.1109/icmla55696.2022.00213 |
| ids.doi | https://doi.org/10.1109/icmla55696.2022.00213 |
| ids.openalex | https://openalex.org/W4360764596 |
| fwci | 2.14241745 |
| type | article |
| title | Knowledge Guided Two-player Reinforcement Learning for Cyber Attacks and Defenses |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1349 |
| biblio.first_page | 1342 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T10734 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Information and Cyber Security |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165696696 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8812565207481384 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[0].display_name | Exploit |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8336803913116455 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7707949876785278 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6700035929679871 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| concepts[4].id | https://openalex.org/C2777303404 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4609980583190918 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[4].display_name | Convergence (economics) |
| concepts[5].id | https://openalex.org/C2778627824 |
| concepts[5].level | 2 |
| concepts[5].score | 0.43697184324264526 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q178561 |
| concepts[5].display_name | Battle |
| concepts[6].id | https://openalex.org/C107457646 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3943886458873749 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[6].display_name | Human–computer interaction |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3130640387535095 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C95457728 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[8].display_name | History |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| concepts[10].id | https://openalex.org/C166957645 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[10].display_name | Archaeology |
| concepts[11].id | https://openalex.org/C50522688 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[11].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/exploit |
| keywords[0].score | 0.8812565207481384 |
| keywords[0].display_name | Exploit |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.8336803913116455 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7707949876785278 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.6700035929679871 |
| keywords[3].display_name | Computer security |
| keywords[4].id | https://openalex.org/keywords/convergence |
| keywords[4].score | 0.4609980583190918 |
| keywords[4].display_name | Convergence (economics) |
| keywords[5].id | https://openalex.org/keywords/battle |
| keywords[5].score | 0.43697184324264526 |
| keywords[5].display_name | Battle |
| keywords[6].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[6].score | 0.3943886458873749 |
| keywords[6].display_name | Human–computer interaction |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3130640387535095 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/icmla55696.2022.00213 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) |
| locations[0].landing_page_url | https://doi.org/10.1109/icmla55696.2022.00213 |
| locations[1].id | pmh:oai:mdsoar.org:11603/26478 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402556 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Maryland Shared Open Access Repository (USMAI Consortium) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11603/26478 |
| locations[2].id | doi:10.13016/m2bdmq-o9my |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402644 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Digital Repository at the University of Maryland (University of Maryland College Park) |
| locations[2].source.host_organization | https://openalex.org/I66946132 |
| locations[2].source.host_organization_name | University of Maryland, College Park |
| locations[2].source.host_organization_lineage | https://openalex.org/I66946132 |
| locations[2].license | public-domain |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/public-domain |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.13016/m2bdmq-o9my |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5014855298 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6437-1324 |
| authorships[0].author.display_name | Aritran Piplai |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79272384 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[0].institutions[0].id | https://openalex.org/I79272384 |
| authorships[0].institutions[0].ror | https://ror.org/02qskvh78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79272384 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Maryland, Baltimore County |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aritran Piplai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[1].author.id | https://openalex.org/A5021175157 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mike Anoruo |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79272384 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[1].institutions[0].id | https://openalex.org/I79272384 |
| authorships[1].institutions[0].ror | https://ror.org/02qskvh78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79272384 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Maryland, Baltimore County |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mike Anoruo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[2].author.id | https://openalex.org/A5031006794 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kayode Fasaye |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79272384 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[2].institutions[0].id | https://openalex.org/I79272384 |
| authorships[2].institutions[0].ror | https://ror.org/02qskvh78 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79272384 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Maryland, Baltimore County |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kayode Fasaye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[3].author.id | https://openalex.org/A5020975010 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8641-3193 |
| authorships[3].author.display_name | Anupam Joshi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79272384 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[3].institutions[0].id | https://openalex.org/I79272384 |
| authorships[3].institutions[0].ror | https://ror.org/02qskvh78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79272384 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Maryland, Baltimore County |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anupam Joshi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[4].author.id | https://openalex.org/A5009972149 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tim Finin |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79272384 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[4].institutions[0].id | https://openalex.org/I79272384 |
| authorships[4].institutions[0].ror | https://ror.org/02qskvh78 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79272384 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Maryland, Baltimore County |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tim Finin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Maryland,Dept. of Computer Science & Electrical Engineering,Baltimore County |
| authorships[5].author.id | https://openalex.org/A5086766935 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ahmad Ridley |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I130440993 |
| authorships[5].affiliations[0].raw_affiliation_string | Laboratory for Advanced Cybersecurity Research, National Security Agency |
| authorships[5].institutions[0].id | https://openalex.org/I130440993 |
| authorships[5].institutions[0].ror | https://ror.org/0047bvr32 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I130440993, https://openalex.org/I1330347796 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | National Security Agency |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Ahmad Ridley |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Laboratory for Advanced Cybersecurity Research, National Security Agency |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11603/26478 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Knowledge Guided Two-player Reinforcement Learning for Cyber Attacks and Defenses |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2003237632, https://openalex.org/W2350977361, https://openalex.org/W2348097125, https://openalex.org/W2000391299, https://openalex.org/W17155033, https://openalex.org/W2994023542, https://openalex.org/W2999081595, https://openalex.org/W1558737772, https://openalex.org/W3131868133, https://openalex.org/W2357456606 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:mdsoar.org:11603/26478 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402556 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Maryland Shared Open Access Repository (USMAI Consortium) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/11603/26478 |
| primary_location.id | doi:10.1109/icmla55696.2022.00213 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) |
| primary_location.landing_page_url | https://doi.org/10.1109/icmla55696.2022.00213 |
| publication_date | 2022-12-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2952298682, https://openalex.org/W4239319433, https://openalex.org/W3000539293, https://openalex.org/W2997634552, https://openalex.org/W6744241167, https://openalex.org/W6790796223, https://openalex.org/W3179788886, https://openalex.org/W3112693483, https://openalex.org/W2592160065, https://openalex.org/W2126599452, https://openalex.org/W2308978510, https://openalex.org/W1975385576, https://openalex.org/W4286284483, https://openalex.org/W2913497771, https://openalex.org/W2900633536, https://openalex.org/W2762155482, https://openalex.org/W3037857795, https://openalex.org/W3137726751, https://openalex.org/W6759896672, https://openalex.org/W6802879114, https://openalex.org/W2964061570, https://openalex.org/W1509474702, https://openalex.org/W2970023415, https://openalex.org/W6757677476, https://openalex.org/W2149950914, https://openalex.org/W1996006421, https://openalex.org/W6754047560, https://openalex.org/W1993842826, https://openalex.org/W6793544917, https://openalex.org/W6800884497, https://openalex.org/W6661564250, https://openalex.org/W2067429903, https://openalex.org/W2145339207, https://openalex.org/W2487152776, https://openalex.org/W2997993688, https://openalex.org/W4287022721, https://openalex.org/W3127446549, https://openalex.org/W3154457404, https://openalex.org/W2753718471, https://openalex.org/W3207252194 |
| referenced_works_count | 40 |
| abstract_inverted_index.a | 59, 85 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.RL | 88, 109 |
| abstract_inverted_index.We | 102, 126 |
| abstract_inverted_index.an | 4, 33 |
| abstract_inverted_index.by | 76, 111 |
| abstract_inverted_index.in | 32, 51 |
| abstract_inverted_index.of | 12, 95, 107 |
| abstract_inverted_index.on | 121 |
| abstract_inverted_index.to | 7, 25, 29, 38, 71 |
| abstract_inverted_index.we | 56, 83 |
| abstract_inverted_index.and | 63, 99, 123, 129 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.can | 43, 57 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 9, 73, 77, 93, 97, 105, 108, 135 |
| abstract_inverted_index.(RL) | 67 |
| abstract_inverted_index.With | 48 |
| abstract_inverted_index.both | 96 |
| abstract_inverted_index.from | 20, 117 |
| abstract_inverted_index.have | 127 |
| abstract_inverted_index.into | 134 |
| abstract_inverted_index.lead | 37 |
| abstract_inverted_index.that | 42, 90 |
| abstract_inverted_index.them | 113 |
| abstract_inverted_index.this | 81 |
| abstract_inverted_index.when | 14 |
| abstract_inverted_index.with | 16, 114 |
| abstract_inverted_index.Cyber | 0 |
| abstract_inverted_index.These | 35 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.cyber | 52 |
| abstract_inverted_index.faced | 15 |
| abstract_inverted_index.leads | 24 |
| abstract_inverted_index.often | 23, 36 |
| abstract_inverted_index.these | 21 |
| abstract_inverted_index.train | 64 |
| abstract_inverted_index.Graphs | 120 |
| abstract_inverted_index.agents | 70, 110 |
| abstract_inverted_index.attack | 72, 122 |
| abstract_inverted_index.avenue | 6 |
| abstract_inverted_index.battle | 53 |
| abstract_inverted_index.better | 39 |
| abstract_inverted_index.expert | 115 |
| abstract_inverted_index.paper, | 82 |
| abstract_inverted_index.recent | 49 |
| abstract_inverted_index.steps. | 125 |
| abstract_inverted_index.system | 74 |
| abstract_inverted_index.unseen | 27 |
| abstract_inverted_index.agents. | 101 |
| abstract_inverted_index.counter | 44 |
| abstract_inverted_index.defense | 1, 40, 60 |
| abstract_inverted_index.derived | 19 |
| abstract_inverted_index.exploit | 30 |
| abstract_inverted_index.finding | 26 |
| abstract_inverted_index.further | 103 |
| abstract_inverted_index.guiding | 112 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.system. | 137 |
| abstract_inverted_index.unknown | 46 |
| abstract_inverted_index.attacker | 98 |
| abstract_inverted_index.capacity | 11 |
| abstract_inverted_index.defender | 100 |
| abstract_inverted_index.describe | 84 |
| abstract_inverted_index.exercise | 61 |
| abstract_inverted_index.generate | 58 |
| abstract_inverted_index.improves | 92 |
| abstract_inverted_index.learning | 66 |
| abstract_inverted_index.proposed | 132 |
| abstract_inverted_index.Knowledge | 119 |
| abstract_inverted_index.described | 75 |
| abstract_inverted_index.exercises | 2, 22 |
| abstract_inverted_index.exploits. | 47 |
| abstract_inverted_index.important | 5 |
| abstract_inverted_index.knowledge | 116 |
| abstract_inverted_index.simulated | 78 |
| abstract_inverted_index.technical | 10 |
| abstract_inverted_index.accelerate | 104 |
| abstract_inverted_index.approaches | 133 |
| abstract_inverted_index.autonomous | 69 |
| abstract_inverted_index.game-based | 87 |
| abstract_inverted_index.integrated | 130 |
| abstract_inverted_index.mechanisms | 41 |
| abstract_inverted_index.mitigation | 124 |
| abstract_inverted_index.platforms, | 55 |
| abstract_inverted_index.previously | 45 |
| abstract_inverted_index.simulation | 54 |
| abstract_inverted_index.two-player | 86 |
| abstract_inverted_index.understand | 8 |
| abstract_inverted_index.Information | 18 |
| abstract_inverted_index.convergence | 106 |
| abstract_inverted_index.environment | 62, 89 |
| abstract_inverted_index.implemented | 128 |
| abstract_inverted_index.performance | 94 |
| abstract_inverted_index.developments | 50 |
| abstract_inverted_index.environment. | 79 |
| abstract_inverted_index.Cybersecurity | 118 |
| abstract_inverted_index.organization. | 34 |
| abstract_inverted_index.organizations | 13 |
| abstract_inverted_index.reinforcement | 65 |
| abstract_inverted_index.CyberBattleSim | 136 |
| abstract_inverted_index.cyber-threats. | 17 |
| abstract_inverted_index.simultaneously | 91 |
| abstract_inverted_index.vulnerabilities | 31 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.83825164 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |