KPMapNet: Keypoint Representation Learning for Online Vectorized High-Definition Map Construction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25061897
Vectorized high-definition (HD) map construction is a critical task in the autonomous driving domain. The existing methods typically represent vectorized map elements with a fixed number of points, establishing robust baselines for this task. However, the inherent shape priors introduce additional shape errors, which in turn lead to error accumulation in the downstream tasks. Moreover, the subtle and sparse nature of the annotations limits detection-based frameworks in accurately extracting the relevant features, often resulting in the loss of fine structural details in the predictions. To address these challenges, this work presents KPMapNet, an end-to-end framework that redefines the ground truth training representation of vectorized map elements to achieve precise topological representations. Specifically, the conventional equidistant sampling method is modified to better preserve the geometric features of the original instances while maintaining a fixed number of points. In addition, a map mask fusion module and an enhanced hybrid attention module are incorporated to mitigate the issues introduced by the new representation. Moreover, a novel point-line matching loss function is introduced to further refine the training process. Extensive experiments on the nuScenes and Argoverse2 datasets demonstrate that KPMapNet achieves state-of-the-art performance, with 75.1 mAP on nuScenes and 74.2 mAP on Argoverse2. The visualization results further corroborate the enhanced accuracy of the map generation outcomes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s25061897
- https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617
- OA Status
- gold
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408569706
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408569706Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s25061897Digital Object Identifier
- Title
-
KPMapNet: Keypoint Representation Learning for Online Vectorized High-Definition Map ConstructionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
Bicheng Jin, Wenyu Hao, W. QIU, Shanmin PangList of authors in order
- Landing page
-
https://doi.org/10.3390/s25061897Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617Direct OA link when available
- Concepts
-
Computer science, Representation (politics), Artificial intelligence, Task (project management), Process (computing), Function (biology), Ground truth, Equidistant, Visualization, Matching (statistics), Realization (probability), Pattern recognition (psychology), Mathematics, Evolutionary biology, Statistics, Biology, Economics, Politics, Operating system, Political science, Management, Geometry, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408569706 |
|---|---|
| doi | https://doi.org/10.3390/s25061897 |
| ids.doi | https://doi.org/10.3390/s25061897 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40293031 |
| ids.openalex | https://openalex.org/W4408569706 |
| fwci | 0.0 |
| type | article |
| title | KPMapNet: Keypoint Representation Learning for Online Vectorized High-Definition Map Construction |
| awards[0].id | https://openalex.org/G7454637714 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022ZD0117903 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 6 |
| biblio.volume | 25 |
| biblio.last_page | 1897 |
| biblio.first_page | 1897 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.725120484828949 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6014525294303894 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5342079401016235 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5162829756736755 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4746716022491455 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C14036430 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4737206995487213 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[5].display_name | Function (biology) |
| concepts[6].id | https://openalex.org/C146849305 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46859994530677795 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[6].display_name | Ground truth |
| concepts[7].id | https://openalex.org/C158245278 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45977911353111267 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q4386982 |
| concepts[7].display_name | Equidistant |
| concepts[8].id | https://openalex.org/C36464697 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44870132207870483 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[8].display_name | Visualization |
| concepts[9].id | https://openalex.org/C165064840 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4405451714992523 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[9].display_name | Matching (statistics) |
| concepts[10].id | https://openalex.org/C2781089630 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43914806842803955 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21856745 |
| concepts[10].display_name | Realization (probability) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3988177180290222 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.13281843066215515 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C78458016 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[13].display_name | Evolutionary biology |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C94625758 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[17].display_name | Politics |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C187736073 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[20].display_name | Management |
| concepts[21].id | https://openalex.org/C2524010 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[21].display_name | Geometry |
| concepts[22].id | https://openalex.org/C199539241 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[22].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.725120484828949 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.6014525294303894 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5342079401016235 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/task |
| keywords[3].score | 0.5162829756736755 |
| keywords[3].display_name | Task (project management) |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.4746716022491455 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/function |
| keywords[5].score | 0.4737206995487213 |
| keywords[5].display_name | Function (biology) |
| keywords[6].id | https://openalex.org/keywords/ground-truth |
| keywords[6].score | 0.46859994530677795 |
| keywords[6].display_name | Ground truth |
| keywords[7].id | https://openalex.org/keywords/equidistant |
| keywords[7].score | 0.45977911353111267 |
| keywords[7].display_name | Equidistant |
| keywords[8].id | https://openalex.org/keywords/visualization |
| keywords[8].score | 0.44870132207870483 |
| keywords[8].display_name | Visualization |
| keywords[9].id | https://openalex.org/keywords/matching |
| keywords[9].score | 0.4405451714992523 |
| keywords[9].display_name | Matching (statistics) |
| keywords[10].id | https://openalex.org/keywords/realization |
| keywords[10].score | 0.43914806842803955 |
| keywords[10].display_name | Realization (probability) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3988177180290222 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.13281843066215515 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/s25061897 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s25061897 |
| locations[1].id | pmid:40293031 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40293031 |
| locations[2].id | pmh:oai:doaj.org/article:9e97314245eb45daa1681bd5518c1249 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 25, Iss 6, p 1897 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/9e97314245eb45daa1681bd5518c1249 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11945871 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11945871 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5037469802 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Bicheng Jin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[0].institutions[0].id | https://openalex.org/I87445476 |
| authorships[0].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bicheng Jin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[1].author.id | https://openalex.org/A5110995690 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wenyu Hao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210130112 |
| authorships[1].affiliations[0].raw_affiliation_string | China Academy of Electronics and Information Technology, Beijing 100041, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210130112 |
| authorships[1].institutions[0].ror | https://ror.org/038dte259 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210130112, https://openalex.org/I890469752 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China Academy of Information and Communications Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenyu Hao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China Academy of Electronics and Information Technology, Beijing 100041, China |
| authorships[2].author.id | https://openalex.org/A5112443961 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7373-7255 |
| authorships[2].author.display_name | W. QIU |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[2].institutions[0].id | https://openalex.org/I87445476 |
| authorships[2].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenzhao Qiu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[3].author.id | https://openalex.org/A5006557413 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7217-864X |
| authorships[3].author.display_name | Shanmin Pang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| authorships[3].institutions[0].id | https://openalex.org/I87445476 |
| authorships[3].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shanmin Pang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | KPMapNet: Keypoint Representation Learning for Online Vectorized High-Definition Map Construction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2055230676, https://openalex.org/W2373708349, https://openalex.org/W2370379095, https://openalex.org/W2064284991, https://openalex.org/W2385837322, https://openalex.org/W2123581415, https://openalex.org/W2546071705, https://openalex.org/W2354382931, https://openalex.org/W2392576975, https://openalex.org/W2378019422 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s25061897 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s25061897 |
| primary_location.id | doi:10.3390/s25061897 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/25/6/1897/pdf?version=1742313617 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s25061897 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3045906651, https://openalex.org/W3134623788, https://openalex.org/W3175853703, https://openalex.org/W4225718785, https://openalex.org/W4226016029, https://openalex.org/W4311757964, https://openalex.org/W179122090, https://openalex.org/W4386076400, https://openalex.org/W2809468438, https://openalex.org/W2890003176, https://openalex.org/W2948515602, https://openalex.org/W3179351458, https://openalex.org/W4294016731, https://openalex.org/W3034669477, https://openalex.org/W6838633692, https://openalex.org/W4403160743, https://openalex.org/W3035574168, https://openalex.org/W3202707544, https://openalex.org/W2909908358, https://openalex.org/W4388757371, https://openalex.org/W4383066393, https://openalex.org/W4386071987, https://openalex.org/W3109395584, https://openalex.org/W4394625866, https://openalex.org/W4390871799, https://openalex.org/W4312460151, https://openalex.org/W3034512672, https://openalex.org/W4386065565, https://openalex.org/W6645943304, https://openalex.org/W4251696430, https://openalex.org/W2194775991, https://openalex.org/W2946948417, https://openalex.org/W2970987838, https://openalex.org/W2565639579, https://openalex.org/W4382464460, https://openalex.org/W4312894406, https://openalex.org/W6853801128, https://openalex.org/W4381659335, https://openalex.org/W3100744475, https://openalex.org/W1981934656, https://openalex.org/W3102343027 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 6, 23, 131, 138, 161 |
| abstract_inverted_index.In | 136 |
| abstract_inverted_index.To | 84 |
| abstract_inverted_index.an | 92, 144 |
| abstract_inverted_index.by | 156 |
| abstract_inverted_index.in | 9, 44, 50, 66, 74, 81 |
| abstract_inverted_index.is | 5, 117, 167 |
| abstract_inverted_index.of | 26, 60, 77, 102, 125, 134, 207 |
| abstract_inverted_index.on | 177, 192, 197 |
| abstract_inverted_index.to | 47, 106, 119, 151, 169 |
| abstract_inverted_index.The | 14, 199 |
| abstract_inverted_index.and | 57, 143, 180, 194 |
| abstract_inverted_index.are | 149 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.mAP | 191, 196 |
| abstract_inverted_index.map | 3, 20, 104, 139, 209 |
| abstract_inverted_index.new | 158 |
| abstract_inverted_index.the | 10, 35, 51, 55, 61, 69, 75, 82, 97, 112, 122, 126, 153, 157, 172, 178, 204, 208 |
| abstract_inverted_index.(HD) | 2 |
| abstract_inverted_index.74.2 | 195 |
| abstract_inverted_index.75.1 | 190 |
| abstract_inverted_index.fine | 78 |
| abstract_inverted_index.lead | 46 |
| abstract_inverted_index.loss | 76, 165 |
| abstract_inverted_index.mask | 140 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 95, 184 |
| abstract_inverted_index.this | 32, 88 |
| abstract_inverted_index.turn | 45 |
| abstract_inverted_index.with | 22, 189 |
| abstract_inverted_index.work | 89 |
| abstract_inverted_index.error | 48 |
| abstract_inverted_index.fixed | 24, 132 |
| abstract_inverted_index.novel | 162 |
| abstract_inverted_index.often | 72 |
| abstract_inverted_index.shape | 37, 41 |
| abstract_inverted_index.task. | 33 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.truth | 99 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.while | 129 |
| abstract_inverted_index.better | 120 |
| abstract_inverted_index.fusion | 141 |
| abstract_inverted_index.ground | 98 |
| abstract_inverted_index.hybrid | 146 |
| abstract_inverted_index.issues | 154 |
| abstract_inverted_index.limits | 63 |
| abstract_inverted_index.method | 116 |
| abstract_inverted_index.module | 142, 148 |
| abstract_inverted_index.nature | 59 |
| abstract_inverted_index.number | 25, 133 |
| abstract_inverted_index.priors | 38 |
| abstract_inverted_index.refine | 171 |
| abstract_inverted_index.robust | 29 |
| abstract_inverted_index.sparse | 58 |
| abstract_inverted_index.subtle | 56 |
| abstract_inverted_index.tasks. | 53 |
| abstract_inverted_index.achieve | 107 |
| abstract_inverted_index.address | 85 |
| abstract_inverted_index.details | 80 |
| abstract_inverted_index.domain. | 13 |
| abstract_inverted_index.driving | 12 |
| abstract_inverted_index.errors, | 42 |
| abstract_inverted_index.further | 170, 202 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.points, | 27 |
| abstract_inverted_index.points. | 135 |
| abstract_inverted_index.precise | 108 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.KPMapNet | 185 |
| abstract_inverted_index.accuracy | 206 |
| abstract_inverted_index.achieves | 186 |
| abstract_inverted_index.critical | 7 |
| abstract_inverted_index.datasets | 182 |
| abstract_inverted_index.elements | 21, 105 |
| abstract_inverted_index.enhanced | 145, 205 |
| abstract_inverted_index.existing | 15 |
| abstract_inverted_index.features | 124 |
| abstract_inverted_index.function | 166 |
| abstract_inverted_index.inherent | 36 |
| abstract_inverted_index.matching | 164 |
| abstract_inverted_index.mitigate | 152 |
| abstract_inverted_index.modified | 118 |
| abstract_inverted_index.nuScenes | 179, 193 |
| abstract_inverted_index.original | 127 |
| abstract_inverted_index.presents | 90 |
| abstract_inverted_index.preserve | 121 |
| abstract_inverted_index.process. | 174 |
| abstract_inverted_index.relevant | 70 |
| abstract_inverted_index.sampling | 115 |
| abstract_inverted_index.training | 100, 173 |
| abstract_inverted_index.Extensive | 175 |
| abstract_inverted_index.KPMapNet, | 91 |
| abstract_inverted_index.Moreover, | 54, 160 |
| abstract_inverted_index.addition, | 137 |
| abstract_inverted_index.attention | 147 |
| abstract_inverted_index.baselines | 30 |
| abstract_inverted_index.features, | 71 |
| abstract_inverted_index.framework | 94 |
| abstract_inverted_index.geometric | 123 |
| abstract_inverted_index.instances | 128 |
| abstract_inverted_index.introduce | 39 |
| abstract_inverted_index.outcomes. | 211 |
| abstract_inverted_index.redefines | 96 |
| abstract_inverted_index.represent | 18 |
| abstract_inverted_index.resulting | 73 |
| abstract_inverted_index.typically | 17 |
| abstract_inverted_index.Argoverse2 | 181 |
| abstract_inverted_index.Vectorized | 0 |
| abstract_inverted_index.accurately | 67 |
| abstract_inverted_index.additional | 40 |
| abstract_inverted_index.autonomous | 11 |
| abstract_inverted_index.downstream | 52 |
| abstract_inverted_index.end-to-end | 93 |
| abstract_inverted_index.extracting | 68 |
| abstract_inverted_index.frameworks | 65 |
| abstract_inverted_index.generation | 210 |
| abstract_inverted_index.introduced | 155, 168 |
| abstract_inverted_index.point-line | 163 |
| abstract_inverted_index.structural | 79 |
| abstract_inverted_index.vectorized | 19, 103 |
| abstract_inverted_index.Argoverse2. | 198 |
| abstract_inverted_index.annotations | 62 |
| abstract_inverted_index.challenges, | 87 |
| abstract_inverted_index.corroborate | 203 |
| abstract_inverted_index.demonstrate | 183 |
| abstract_inverted_index.equidistant | 114 |
| abstract_inverted_index.experiments | 176 |
| abstract_inverted_index.maintaining | 130 |
| abstract_inverted_index.topological | 109 |
| abstract_inverted_index.accumulation | 49 |
| abstract_inverted_index.construction | 4 |
| abstract_inverted_index.conventional | 113 |
| abstract_inverted_index.establishing | 28 |
| abstract_inverted_index.incorporated | 150 |
| abstract_inverted_index.performance, | 188 |
| abstract_inverted_index.predictions. | 83 |
| abstract_inverted_index.Specifically, | 111 |
| abstract_inverted_index.visualization | 200 |
| abstract_inverted_index.representation | 101 |
| abstract_inverted_index.detection-based | 64 |
| abstract_inverted_index.high-definition | 1 |
| abstract_inverted_index.representation. | 159 |
| abstract_inverted_index.representations. | 110 |
| abstract_inverted_index.state-of-the-art | 187 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5006557413 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I87445476 |
| citation_normalized_percentile.value | 0.04786791 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |