KurTail : Kurtosis-based LLM Quantization Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.01483
One of the challenges of quantizing a large language model (LLM) is the presence of outliers. Outliers often make uniform quantization schemes less effective, particularly in extreme cases such as 4-bit quantization. We introduce KurTail, a new post-training quantization (PTQ) scheme that leverages Kurtosis-based rotation to mitigate outliers in the activations of LLMs. Our method optimizes Kurtosis as a measure of tailedness. This approach enables the quantization of weights, activations, and the KV cache in 4 bits. We utilize layer-wise optimization, ensuring memory efficiency. KurTail outperforms existing quantization methods, offering a 13.3\% boost in MMLU accuracy and a 15.5\% drop in Wiki perplexity compared to QuaRot. It also outperforms SpinQuant with a 2.6\% MMLU gain and reduces perplexity by 2.9\%, all while reducing the training cost. For comparison, learning the rotation using SpinQuant for Llama3-70B requires at least four NVIDIA H100 80GB GPUs, whereas our method requires only a single GPU, making it a more accessible solution for consumer GPU.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.01483
- https://arxiv.org/pdf/2503.01483
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415084894
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415084894Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.01483Digital Object Identifier
- Title
-
KurTail : Kurtosis-based LLM QuantizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-03Full publication date if available
- Authors
-
Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski, Evangelos Eleftheriou, Martino DazziList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.01483Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.01483Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.01483Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415084894 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.01483 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.01483 |
| ids.openalex | https://openalex.org/W4415084894 |
| fwci | |
| type | preprint |
| title | KurTail : Kurtosis-based LLM Quantization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9854000210762024 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.01483 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.01483 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.01483 |
| locations[1].id | doi:10.48550/arxiv.2503.01483 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.01483 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5047455660 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Mohammad Sadegh Akhondzadeh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akhondzadeh, Mohammad Sadegh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058887708 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aleksandar Bojchevski |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bojchevski, Aleksandar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014533256 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Evangelos Eleftheriou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eleftheriou, Evangelos |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051779027 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4184-2170 |
| authorships[3].author.display_name | Martino Dazzi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dazzi, Martino |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.01483 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-12T00:00:00 |
| display_name | KurTail : Kurtosis-based LLM Quantization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9854000210762024 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.01483 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.01483 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.01483 |
| primary_location.id | pmh:oai:arXiv.org:2503.01483 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.01483 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.01483 |
| publication_date | 2025-03-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 75 |
| abstract_inverted_index.a | 6, 35, 58, 90, 97, 111, 148, 153 |
| abstract_inverted_index.It | 106 |
| abstract_inverted_index.KV | 72 |
| abstract_inverted_index.We | 32, 77 |
| abstract_inverted_index.as | 29, 57 |
| abstract_inverted_index.at | 136 |
| abstract_inverted_index.by | 118 |
| abstract_inverted_index.in | 25, 48, 74, 93, 100 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.it | 152 |
| abstract_inverted_index.of | 1, 4, 14, 51, 60, 67 |
| abstract_inverted_index.to | 45, 104 |
| abstract_inverted_index.For | 126 |
| abstract_inverted_index.One | 0 |
| abstract_inverted_index.Our | 53 |
| abstract_inverted_index.all | 120 |
| abstract_inverted_index.and | 70, 96, 115 |
| abstract_inverted_index.for | 133, 157 |
| abstract_inverted_index.new | 36 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 2, 12, 49, 65, 71, 123, 129 |
| abstract_inverted_index.80GB | 141 |
| abstract_inverted_index.GPU, | 150 |
| abstract_inverted_index.GPU. | 159 |
| abstract_inverted_index.H100 | 140 |
| abstract_inverted_index.MMLU | 94, 113 |
| abstract_inverted_index.This | 62 |
| abstract_inverted_index.Wiki | 101 |
| abstract_inverted_index.also | 107 |
| abstract_inverted_index.drop | 99 |
| abstract_inverted_index.four | 138 |
| abstract_inverted_index.gain | 114 |
| abstract_inverted_index.less | 22 |
| abstract_inverted_index.make | 18 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.only | 147 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 41 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.(LLM) | 10 |
| abstract_inverted_index.(PTQ) | 39 |
| abstract_inverted_index.2.6\% | 112 |
| abstract_inverted_index.4-bit | 30 |
| abstract_inverted_index.GPUs, | 142 |
| abstract_inverted_index.LLMs. | 52 |
| abstract_inverted_index.bits. | 76 |
| abstract_inverted_index.boost | 92 |
| abstract_inverted_index.cache | 73 |
| abstract_inverted_index.cases | 27 |
| abstract_inverted_index.cost. | 125 |
| abstract_inverted_index.large | 7 |
| abstract_inverted_index.least | 137 |
| abstract_inverted_index.model | 9 |
| abstract_inverted_index.often | 17 |
| abstract_inverted_index.using | 131 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.13.3\% | 91 |
| abstract_inverted_index.15.5\% | 98 |
| abstract_inverted_index.2.9\%, | 119 |
| abstract_inverted_index.NVIDIA | 139 |
| abstract_inverted_index.making | 151 |
| abstract_inverted_index.memory | 82 |
| abstract_inverted_index.method | 54, 145 |
| abstract_inverted_index.scheme | 40 |
| abstract_inverted_index.single | 149 |
| abstract_inverted_index.KurTail | 84 |
| abstract_inverted_index.QuaRot. | 105 |
| abstract_inverted_index.enables | 64 |
| abstract_inverted_index.extreme | 26 |
| abstract_inverted_index.measure | 59 |
| abstract_inverted_index.reduces | 116 |
| abstract_inverted_index.schemes | 21 |
| abstract_inverted_index.uniform | 19 |
| abstract_inverted_index.utilize | 78 |
| abstract_inverted_index.whereas | 143 |
| abstract_inverted_index.KurTail, | 34 |
| abstract_inverted_index.Kurtosis | 56 |
| abstract_inverted_index.Outliers | 16 |
| abstract_inverted_index.accuracy | 95 |
| abstract_inverted_index.approach | 63 |
| abstract_inverted_index.compared | 103 |
| abstract_inverted_index.consumer | 158 |
| abstract_inverted_index.ensuring | 81 |
| abstract_inverted_index.existing | 86 |
| abstract_inverted_index.language | 8 |
| abstract_inverted_index.learning | 128 |
| abstract_inverted_index.methods, | 88 |
| abstract_inverted_index.mitigate | 46 |
| abstract_inverted_index.offering | 89 |
| abstract_inverted_index.outliers | 47 |
| abstract_inverted_index.presence | 13 |
| abstract_inverted_index.reducing | 122 |
| abstract_inverted_index.requires | 135, 146 |
| abstract_inverted_index.rotation | 44, 130 |
| abstract_inverted_index.solution | 156 |
| abstract_inverted_index.training | 124 |
| abstract_inverted_index.weights, | 68 |
| abstract_inverted_index.SpinQuant | 109, 132 |
| abstract_inverted_index.introduce | 33 |
| abstract_inverted_index.leverages | 42 |
| abstract_inverted_index.optimizes | 55 |
| abstract_inverted_index.outliers. | 15 |
| abstract_inverted_index.Llama3-70B | 134 |
| abstract_inverted_index.accessible | 155 |
| abstract_inverted_index.challenges | 3 |
| abstract_inverted_index.effective, | 23 |
| abstract_inverted_index.layer-wise | 79 |
| abstract_inverted_index.perplexity | 102, 117 |
| abstract_inverted_index.quantizing | 5 |
| abstract_inverted_index.activations | 50 |
| abstract_inverted_index.comparison, | 127 |
| abstract_inverted_index.efficiency. | 83 |
| abstract_inverted_index.outperforms | 85, 108 |
| abstract_inverted_index.tailedness. | 61 |
| abstract_inverted_index.activations, | 69 |
| abstract_inverted_index.particularly | 24 |
| abstract_inverted_index.quantization | 20, 38, 66, 87 |
| abstract_inverted_index.optimization, | 80 |
| abstract_inverted_index.post-training | 37 |
| abstract_inverted_index.quantization. | 31 |
| abstract_inverted_index.Kurtosis-based | 43 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |