L3GS: Layered 3D Gaussian Splats for Efficient 3D Scene Delivery Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.05517
Traditional 3D content representations include dense point clouds that consume large amounts of data and hence network bandwidth, while newer representations such as neural radiance fields suffer from poor frame rates due to their non-standard volumetric rendering pipeline. 3D Gaussian splats (3DGS) can be seen as a generalization of point clouds that meet the best of both worlds, with high visual quality and efficient rendering for real-time frame rates. However, delivering 3DGS scenes from a hosting server to client devices is still challenging due to high network data consumption (e.g., 1.5 GB for a single scene). The goal of this work is to create an efficient 3D content delivery framework that allows users to view high quality 3D scenes with 3DGS as the underlying data representation. The main contributions of the paper are: (1) Creating new layered 3DGS scenes for efficient delivery, (2) Scheduling algorithms to choose what splats to download at what time, and (3) Trace-driven experiments from users wearing virtual reality headsets to evaluate the visual quality and latency. Our system for Layered 3D Gaussian Splats delivery L3GS demonstrates high visual quality, achieving 16.9% higher average SSIM compared to baselines, and also works with other compressed 3DGS representations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.05517
- https://arxiv.org/pdf/2504.05517
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416527481
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416527481Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.05517Digital Object Identifier
- Title
-
L3GS: Layered 3D Gaussian Splats for Efficient 3D Scene DeliveryWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-07Full publication date if available
- Authors
-
Yi-Zhen Tsai, Xiaolei Zhang, Jiasi ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.05517Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.05517Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.05517Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416527481 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.05517 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.05517 |
| ids.openalex | https://openalex.org/W4416527481 |
| fwci | |
| type | preprint |
| title | L3GS: Layered 3D Gaussian Splats for Efficient 3D Scene Delivery |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.05517 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.05517 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.05517 |
| locations[1].id | doi:10.48550/arxiv.2504.05517 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.05517 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061871415 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yi-Zhen Tsai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tsai, Yi-Zhen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100450095 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9415-3136 |
| authorships[1].author.display_name | Xiaolei Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Xuechen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5061832197 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9923-9027 |
| authorships[2].author.display_name | Jiasi Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Jiasi |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.05517 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | L3GS: Layered 3D Gaussian Splats for Efficient 3D Scene Delivery |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T16:34:24.145480 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.05517 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.05517 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.05517 |
| primary_location.id | pmh:oai:arXiv.org:2504.05517 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.05517 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.05517 |
| publication_date | 2025-04-07 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 74, 93 |
| abstract_inverted_index.3D | 1, 38, 106, 117, 175 |
| abstract_inverted_index.GB | 91 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.as | 22, 45, 121 |
| abstract_inverted_index.at | 151 |
| abstract_inverted_index.be | 43 |
| abstract_inverted_index.is | 80, 101 |
| abstract_inverted_index.of | 12, 48, 55, 98, 129 |
| abstract_inverted_index.to | 32, 77, 84, 102, 113, 145, 149, 164, 190 |
| abstract_inverted_index.(1) | 133 |
| abstract_inverted_index.(2) | 142 |
| abstract_inverted_index.(3) | 155 |
| abstract_inverted_index.1.5 | 90 |
| abstract_inverted_index.Our | 171 |
| abstract_inverted_index.The | 96, 126 |
| abstract_inverted_index.and | 14, 62, 154, 169, 192 |
| abstract_inverted_index.can | 42 |
| abstract_inverted_index.due | 31, 83 |
| abstract_inverted_index.for | 65, 92, 139, 173 |
| abstract_inverted_index.new | 135 |
| abstract_inverted_index.the | 53, 122, 130, 166 |
| abstract_inverted_index.3DGS | 71, 120, 137, 198 |
| abstract_inverted_index.L3GS | 179 |
| abstract_inverted_index.SSIM | 188 |
| abstract_inverted_index.also | 193 |
| abstract_inverted_index.are: | 132 |
| abstract_inverted_index.best | 54 |
| abstract_inverted_index.both | 56 |
| abstract_inverted_index.data | 13, 87, 124 |
| abstract_inverted_index.from | 27, 73, 158 |
| abstract_inverted_index.goal | 97 |
| abstract_inverted_index.high | 59, 85, 115, 181 |
| abstract_inverted_index.main | 127 |
| abstract_inverted_index.meet | 52 |
| abstract_inverted_index.poor | 28 |
| abstract_inverted_index.seen | 44 |
| abstract_inverted_index.such | 21 |
| abstract_inverted_index.that | 8, 51, 110 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.view | 114 |
| abstract_inverted_index.what | 147, 152 |
| abstract_inverted_index.with | 58, 119, 195 |
| abstract_inverted_index.work | 100 |
| abstract_inverted_index.16.9% | 185 |
| abstract_inverted_index.dense | 5 |
| abstract_inverted_index.frame | 29, 67 |
| abstract_inverted_index.hence | 15 |
| abstract_inverted_index.large | 10 |
| abstract_inverted_index.newer | 19 |
| abstract_inverted_index.other | 196 |
| abstract_inverted_index.paper | 131 |
| abstract_inverted_index.point | 6, 49 |
| abstract_inverted_index.rates | 30 |
| abstract_inverted_index.still | 81 |
| abstract_inverted_index.their | 33 |
| abstract_inverted_index.time, | 153 |
| abstract_inverted_index.users | 112, 159 |
| abstract_inverted_index.while | 18 |
| abstract_inverted_index.works | 194 |
| abstract_inverted_index.(3DGS) | 41 |
| abstract_inverted_index.(e.g., | 89 |
| abstract_inverted_index.Splats | 177 |
| abstract_inverted_index.allows | 111 |
| abstract_inverted_index.choose | 146 |
| abstract_inverted_index.client | 78 |
| abstract_inverted_index.clouds | 7, 50 |
| abstract_inverted_index.create | 103 |
| abstract_inverted_index.fields | 25 |
| abstract_inverted_index.higher | 186 |
| abstract_inverted_index.neural | 23 |
| abstract_inverted_index.rates. | 68 |
| abstract_inverted_index.scenes | 72, 118, 138 |
| abstract_inverted_index.server | 76 |
| abstract_inverted_index.single | 94 |
| abstract_inverted_index.splats | 40, 148 |
| abstract_inverted_index.suffer | 26 |
| abstract_inverted_index.system | 172 |
| abstract_inverted_index.visual | 60, 167, 182 |
| abstract_inverted_index.Layered | 174 |
| abstract_inverted_index.amounts | 11 |
| abstract_inverted_index.average | 187 |
| abstract_inverted_index.consume | 9 |
| abstract_inverted_index.content | 2, 107 |
| abstract_inverted_index.devices | 79 |
| abstract_inverted_index.hosting | 75 |
| abstract_inverted_index.include | 4 |
| abstract_inverted_index.layered | 136 |
| abstract_inverted_index.network | 16, 86 |
| abstract_inverted_index.quality | 61, 116, 168 |
| abstract_inverted_index.reality | 162 |
| abstract_inverted_index.scene). | 95 |
| abstract_inverted_index.virtual | 161 |
| abstract_inverted_index.wearing | 160 |
| abstract_inverted_index.worlds, | 57 |
| abstract_inverted_index.Creating | 134 |
| abstract_inverted_index.Gaussian | 39, 176 |
| abstract_inverted_index.However, | 69 |
| abstract_inverted_index.compared | 189 |
| abstract_inverted_index.delivery | 108, 178 |
| abstract_inverted_index.download | 150 |
| abstract_inverted_index.evaluate | 165 |
| abstract_inverted_index.headsets | 163 |
| abstract_inverted_index.latency. | 170 |
| abstract_inverted_index.quality, | 183 |
| abstract_inverted_index.radiance | 24 |
| abstract_inverted_index.achieving | 184 |
| abstract_inverted_index.delivery, | 141 |
| abstract_inverted_index.efficient | 63, 105, 140 |
| abstract_inverted_index.framework | 109 |
| abstract_inverted_index.pipeline. | 37 |
| abstract_inverted_index.real-time | 66 |
| abstract_inverted_index.rendering | 36, 64 |
| abstract_inverted_index.Scheduling | 143 |
| abstract_inverted_index.algorithms | 144 |
| abstract_inverted_index.bandwidth, | 17 |
| abstract_inverted_index.baselines, | 191 |
| abstract_inverted_index.compressed | 197 |
| abstract_inverted_index.delivering | 70 |
| abstract_inverted_index.underlying | 123 |
| abstract_inverted_index.volumetric | 35 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.challenging | 82 |
| abstract_inverted_index.consumption | 88 |
| abstract_inverted_index.experiments | 157 |
| abstract_inverted_index.Trace-driven | 156 |
| abstract_inverted_index.demonstrates | 180 |
| abstract_inverted_index.non-standard | 34 |
| abstract_inverted_index.contributions | 128 |
| abstract_inverted_index.generalization | 47 |
| abstract_inverted_index.representation. | 125 |
| abstract_inverted_index.representations | 3, 20 |
| abstract_inverted_index.representations. | 199 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |