Label Uncertainty for Ultrasound Segmentation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.15635
In medical imaging, inter-observer variability among radiologists often introduces label uncertainty, particularly in modalities where visual interpretation is subjective. Lung ultrasound (LUS) is a prime example-it frequently presents a mixture of highly ambiguous regions and clearly discernible structures, making consistent annotation challenging even for experienced clinicians. In this work, we introduce a novel approach to both labeling and training AI models using expert-supplied, per-pixel confidence values. Rather than treating annotations as absolute ground truth, we design a data annotation protocol that captures the confidence that radiologists have in each labeled region, modeling the inherent aleatoric uncertainty present in real-world clinical data. We demonstrate that incorporating these confidence values during training leads to improved segmentation performance. More importantly, we show that this enhanced segmentation quality translates into better performance on downstream clinically-critical tasks-specifically, estimating S/F oxygenation ratio values, classifying S/F ratio change, and predicting 30-day patient readmission. While we empirically evaluate many methods for exposing the uncertainty to the learning model, we find that a simple approach that trains a model on binarized labels obtained with a (60%) confidence threshold works well. Importantly, high thresholds work far better than a naive approach of a 50% threshold, indicating that training on very confident pixels is far more effective. Our study systematically investigates the impact of training with varying confidence thresholds, comparing not only segmentation metrics but also downstream clinical outcomes. These results suggest that label confidence is a valuable signal that, when properly leveraged, can significantly enhance the reliability and clinical utility of AI in medical imaging.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.15635
- https://arxiv.org/pdf/2508.15635
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416051353
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416051353Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.15635Digital Object Identifier
- Title
-
Label Uncertainty for Ultrasound SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-21Full publication date if available
- Authors
-
Malini Shivaram, Gautam Rajendrakumar Gare, Laura Hutchins, Jane Duplantis, Thomas Deiss, Tânia Gomes, Thong Tran, K.H. Patel, Thomas H. Fox, Amita Krishnan, Deva Ramanan, Bennett P. deBoisblanc, Ricardo Luis Rodriguez, John GaleottiList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.15635Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.15635Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.15635Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416051353 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.15635 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.15635 |
| ids.openalex | https://openalex.org/W4416051353 |
| fwci | |
| type | preprint |
| title | Label Uncertainty for Ultrasound Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.15635 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.15635 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.15635 |
| locations[1].id | doi:10.48550/arxiv.2508.15635 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.15635 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5117509452 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Malini Shivaram |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shivaram, Malini |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022291473 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1689-9626 |
| authorships[1].author.display_name | Gautam Rajendrakumar Gare |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gare, Gautam Rajendrakumar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067317372 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-2906-7413 |
| authorships[2].author.display_name | Laura Hutchins |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hutchins, Laura |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5008373863 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Jane Duplantis |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Duplantis, Jacob |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073269604 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0972-7663 |
| authorships[4].author.display_name | Thomas Deiss |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Deiss, Thomas |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5034776590 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Tânia Gomes |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Gomes, Thales Nogueira |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5112389161 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Thong Tran |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tran, Thong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5046320884 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | K.H. Patel |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Patel, Keyur H. |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5012009201 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2940-7942 |
| authorships[8].author.display_name | Thomas H. Fox |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Fox, Thomas H |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5067455038 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Amita Krishnan |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Krishnan, Amita |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5004353237 |
| authorships[10].author.orcid | https://orcid.org/0009-0008-9180-8983 |
| authorships[10].author.display_name | Deva Ramanan |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Ramanan, Deva |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5109283609 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Bennett P. deBoisblanc |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | DeBoisblanc, Bennett |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5054128743 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Ricardo Luis Rodriguez |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Rodriguez, Ricardo |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5051265325 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-4247-4311 |
| authorships[13].author.display_name | John Galeotti |
| authorships[13].author_position | last |
| authorships[13].raw_author_name | Galeotti, John |
| authorships[13].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.15635 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Label Uncertainty for Ultrasound Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:50:02.687080 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.15635 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.15635 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.15635 |
| primary_location.id | pmh:oai:arXiv.org:2508.15635 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.15635 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.15635 |
| publication_date | 2025-08-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 28, 51, 76, 163, 168, 175, 188, 192, 235 |
| abstract_inverted_index.AI | 59, 251 |
| abstract_inverted_index.In | 0, 46 |
| abstract_inverted_index.We | 101 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.in | 12, 87, 97, 252 |
| abstract_inverted_index.is | 17, 22, 202, 234 |
| abstract_inverted_index.of | 30, 191, 212, 250 |
| abstract_inverted_index.on | 128, 170, 198 |
| abstract_inverted_index.to | 54, 111, 156 |
| abstract_inverted_index.we | 49, 74, 117, 147, 160 |
| abstract_inverted_index.50% | 193 |
| abstract_inverted_index.Our | 206 |
| abstract_inverted_index.S/F | 133, 138 |
| abstract_inverted_index.and | 34, 57, 141, 247 |
| abstract_inverted_index.but | 223 |
| abstract_inverted_index.can | 242 |
| abstract_inverted_index.far | 185, 203 |
| abstract_inverted_index.for | 43, 152 |
| abstract_inverted_index.not | 219 |
| abstract_inverted_index.the | 82, 92, 154, 157, 210, 245 |
| abstract_inverted_index.Lung | 19 |
| abstract_inverted_index.More | 115 |
| abstract_inverted_index.also | 224 |
| abstract_inverted_index.both | 55 |
| abstract_inverted_index.data | 77 |
| abstract_inverted_index.each | 88 |
| abstract_inverted_index.even | 42 |
| abstract_inverted_index.find | 161 |
| abstract_inverted_index.have | 86 |
| abstract_inverted_index.high | 182 |
| abstract_inverted_index.into | 125 |
| abstract_inverted_index.many | 150 |
| abstract_inverted_index.more | 204 |
| abstract_inverted_index.only | 220 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.than | 67, 187 |
| abstract_inverted_index.that | 80, 84, 103, 119, 162, 166, 196, 231 |
| abstract_inverted_index.this | 47, 120 |
| abstract_inverted_index.very | 199 |
| abstract_inverted_index.when | 239 |
| abstract_inverted_index.with | 174, 214 |
| abstract_inverted_index.work | 184 |
| abstract_inverted_index.(60%) | 176 |
| abstract_inverted_index.(LUS) | 21 |
| abstract_inverted_index.These | 228 |
| abstract_inverted_index.While | 146 |
| abstract_inverted_index.among | 5 |
| abstract_inverted_index.data. | 100 |
| abstract_inverted_index.label | 9, 232 |
| abstract_inverted_index.leads | 110 |
| abstract_inverted_index.model | 169 |
| abstract_inverted_index.naive | 189 |
| abstract_inverted_index.novel | 52 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.prime | 24 |
| abstract_inverted_index.ratio | 135, 139 |
| abstract_inverted_index.study | 207 |
| abstract_inverted_index.that, | 238 |
| abstract_inverted_index.these | 105 |
| abstract_inverted_index.using | 61 |
| abstract_inverted_index.well. | 180 |
| abstract_inverted_index.where | 14 |
| abstract_inverted_index.work, | 48 |
| abstract_inverted_index.works | 179 |
| abstract_inverted_index.30-day | 143 |
| abstract_inverted_index.Rather | 66 |
| abstract_inverted_index.better | 126, 186 |
| abstract_inverted_index.design | 75 |
| abstract_inverted_index.during | 108 |
| abstract_inverted_index.ground | 72 |
| abstract_inverted_index.highly | 31 |
| abstract_inverted_index.impact | 211 |
| abstract_inverted_index.labels | 172 |
| abstract_inverted_index.making | 38 |
| abstract_inverted_index.model, | 159 |
| abstract_inverted_index.models | 60 |
| abstract_inverted_index.pixels | 201 |
| abstract_inverted_index.signal | 237 |
| abstract_inverted_index.simple | 164 |
| abstract_inverted_index.trains | 167 |
| abstract_inverted_index.truth, | 73 |
| abstract_inverted_index.values | 107 |
| abstract_inverted_index.visual | 15 |
| abstract_inverted_index.change, | 140 |
| abstract_inverted_index.clearly | 35 |
| abstract_inverted_index.enhance | 244 |
| abstract_inverted_index.labeled | 89 |
| abstract_inverted_index.medical | 1, 253 |
| abstract_inverted_index.methods | 151 |
| abstract_inverted_index.metrics | 222 |
| abstract_inverted_index.mixture | 29 |
| abstract_inverted_index.patient | 144 |
| abstract_inverted_index.present | 96 |
| abstract_inverted_index.quality | 123 |
| abstract_inverted_index.region, | 90 |
| abstract_inverted_index.regions | 33 |
| abstract_inverted_index.results | 229 |
| abstract_inverted_index.suggest | 230 |
| abstract_inverted_index.utility | 249 |
| abstract_inverted_index.values, | 136 |
| abstract_inverted_index.values. | 65 |
| abstract_inverted_index.varying | 215 |
| abstract_inverted_index.absolute | 71 |
| abstract_inverted_index.approach | 53, 165, 190 |
| abstract_inverted_index.captures | 81 |
| abstract_inverted_index.clinical | 99, 226, 248 |
| abstract_inverted_index.enhanced | 121 |
| abstract_inverted_index.evaluate | 149 |
| abstract_inverted_index.exposing | 153 |
| abstract_inverted_index.imaging, | 2 |
| abstract_inverted_index.imaging. | 254 |
| abstract_inverted_index.improved | 112 |
| abstract_inverted_index.inherent | 93 |
| abstract_inverted_index.labeling | 56 |
| abstract_inverted_index.learning | 158 |
| abstract_inverted_index.modeling | 91 |
| abstract_inverted_index.obtained | 173 |
| abstract_inverted_index.presents | 27 |
| abstract_inverted_index.properly | 240 |
| abstract_inverted_index.protocol | 79 |
| abstract_inverted_index.training | 58, 109, 197, 213 |
| abstract_inverted_index.treating | 68 |
| abstract_inverted_index.valuable | 236 |
| abstract_inverted_index.aleatoric | 94 |
| abstract_inverted_index.ambiguous | 32 |
| abstract_inverted_index.binarized | 171 |
| abstract_inverted_index.comparing | 218 |
| abstract_inverted_index.confident | 200 |
| abstract_inverted_index.introduce | 50 |
| abstract_inverted_index.outcomes. | 227 |
| abstract_inverted_index.per-pixel | 63 |
| abstract_inverted_index.threshold | 178 |
| abstract_inverted_index.annotation | 40, 78 |
| abstract_inverted_index.confidence | 64, 83, 106, 177, 216, 233 |
| abstract_inverted_index.consistent | 39 |
| abstract_inverted_index.downstream | 129, 225 |
| abstract_inverted_index.effective. | 205 |
| abstract_inverted_index.estimating | 132 |
| abstract_inverted_index.example-it | 25 |
| abstract_inverted_index.frequently | 26 |
| abstract_inverted_index.indicating | 195 |
| abstract_inverted_index.introduces | 8 |
| abstract_inverted_index.leveraged, | 241 |
| abstract_inverted_index.modalities | 13 |
| abstract_inverted_index.predicting | 142 |
| abstract_inverted_index.real-world | 98 |
| abstract_inverted_index.threshold, | 194 |
| abstract_inverted_index.thresholds | 183 |
| abstract_inverted_index.translates | 124 |
| abstract_inverted_index.ultrasound | 20 |
| abstract_inverted_index.annotations | 69 |
| abstract_inverted_index.challenging | 41 |
| abstract_inverted_index.classifying | 137 |
| abstract_inverted_index.clinicians. | 45 |
| abstract_inverted_index.demonstrate | 102 |
| abstract_inverted_index.discernible | 36 |
| abstract_inverted_index.empirically | 148 |
| abstract_inverted_index.experienced | 44 |
| abstract_inverted_index.oxygenation | 134 |
| abstract_inverted_index.performance | 127 |
| abstract_inverted_index.reliability | 246 |
| abstract_inverted_index.structures, | 37 |
| abstract_inverted_index.subjective. | 18 |
| abstract_inverted_index.thresholds, | 217 |
| abstract_inverted_index.uncertainty | 95, 155 |
| abstract_inverted_index.variability | 4 |
| abstract_inverted_index.Importantly, | 181 |
| abstract_inverted_index.importantly, | 116 |
| abstract_inverted_index.investigates | 209 |
| abstract_inverted_index.particularly | 11 |
| abstract_inverted_index.performance. | 114 |
| abstract_inverted_index.radiologists | 6, 85 |
| abstract_inverted_index.readmission. | 145 |
| abstract_inverted_index.segmentation | 113, 122, 221 |
| abstract_inverted_index.uncertainty, | 10 |
| abstract_inverted_index.incorporating | 104 |
| abstract_inverted_index.significantly | 243 |
| abstract_inverted_index.inter-observer | 3 |
| abstract_inverted_index.interpretation | 16 |
| abstract_inverted_index.systematically | 208 |
| abstract_inverted_index.expert-supplied, | 62 |
| abstract_inverted_index.clinically-critical | 130 |
| abstract_inverted_index.tasks-specifically, | 131 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 14 |
| citation_normalized_percentile |