LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.13135
Search and rescue with a team of heterogeneous mobile robots in unknown and large-scale underground environments requires high-precision localization and mapping. This crucial requirement is faced with many challenges in complex and perceptually-degraded subterranean environments, as the onboard perception system is required to operate in off-nominal conditions (poor visibility due to darkness and dust, rugged and muddy terrain, and the presence of self-similar and ambiguous scenes). In a disaster response scenario and in the absence of prior information about the environment, robots must rely on noisy sensor data and perform Simultaneous Localization and Mapping (SLAM) to build a 3D map of the environment and localize themselves and potential survivors. To that end, this paper reports on a multi-robot SLAM system developed by team CoSTAR in the context of the DARPA Subterranean Challenge. We extend our previous work, LAMP, by incorporating a single-robot front-end interface that is adaptable to different odometry sources and lidar configurations, a scalable multi-robot front-end to support inter- and intra-robot loop closure detection for large scale environments and multi-robot teams, and a robust back-end equipped with an outlier-resilient pose graph optimization based on Graduated Non-Convexity. We provide a detailed ablation study on the multi-robot front-end and back-end, and assess the overall system performance in challenging real-world datasets collected across mines, power plants, and caves in the United States. We also release our multi-robot back-end datasets (and the corresponding ground truth), which can serve as challenging benchmarks for large-scale underground SLAM.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.13135
- https://arxiv.org/pdf/2205.13135
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281698853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281698853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.13135Digital Object Identifier
- Title
-
LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground EnvironmentsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-26Full publication date if available
- Authors
-
Yun Sil Chang, Kamak Ebadi, Christopher E. Denniston, Muhammad Fadhil Ginting, Antoni Rosinol, Andrzej Reinke, Matteo Palieri, Jingnan Shi, A. Chatterjee, Benjamin Morrell, Ali‐akbar Agha‐mohammadi, Luca CarloneList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.13135Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.13135Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.13135Direct OA link when available
- Concepts
-
Odometry, Robot, Artificial intelligence, Computer science, Simultaneous localization and mapping, Computer vision, Ground truth, Scalability, Context (archaeology), Search and rescue, Urban search and rescue, Lidar, Terrain, Real-time computing, Mobile robot, Remote sensing, Geography, Database, Cartography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281698853 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.13135 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.13135 |
| ids.openalex | https://openalex.org/W4281698853 |
| fwci | |
| type | preprint |
| title | LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49441653 |
| concepts[0].level | 4 |
| concepts[0].score | 0.7850936651229858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[0].display_name | Odometry |
| concepts[1].id | https://openalex.org/C90509273 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7808146476745605 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[1].display_name | Robot |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6542980670928955 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6144177317619324 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C86369673 |
| concepts[4].level | 4 |
| concepts[4].score | 0.6021897792816162 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[4].display_name | Simultaneous localization and mapping |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5845947265625 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C146849305 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5196000933647156 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[6].display_name | Ground truth |
| concepts[7].id | https://openalex.org/C48044578 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5108508467674255 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[7].display_name | Scalability |
| concepts[8].id | https://openalex.org/C2779343474 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48682230710983276 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[8].display_name | Context (archaeology) |
| concepts[9].id | https://openalex.org/C2775935494 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4828687012195587 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q741964 |
| concepts[9].display_name | Search and rescue |
| concepts[10].id | https://openalex.org/C2777811059 |
| concepts[10].level | 4 |
| concepts[10].score | 0.45889735221862793 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1253257 |
| concepts[10].display_name | Urban search and rescue |
| concepts[11].id | https://openalex.org/C51399673 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4485819637775421 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[11].display_name | Lidar |
| concepts[12].id | https://openalex.org/C161840515 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42075997591018677 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[12].display_name | Terrain |
| concepts[13].id | https://openalex.org/C79403827 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3871249556541443 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[13].display_name | Real-time computing |
| concepts[14].id | https://openalex.org/C19966478 |
| concepts[14].level | 3 |
| concepts[14].score | 0.32425588369369507 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[14].display_name | Mobile robot |
| concepts[15].id | https://openalex.org/C62649853 |
| concepts[15].level | 1 |
| concepts[15].score | 0.24610435962677002 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[15].display_name | Remote sensing |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10293722152709961 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| concepts[17].id | https://openalex.org/C77088390 |
| concepts[17].level | 1 |
| concepts[17].score | 0.10261455178260803 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[17].display_name | Database |
| concepts[18].id | https://openalex.org/C58640448 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08516272902488708 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[18].display_name | Cartography |
| concepts[19].id | https://openalex.org/C166957645 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[19].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/odometry |
| keywords[0].score | 0.7850936651229858 |
| keywords[0].display_name | Odometry |
| keywords[1].id | https://openalex.org/keywords/robot |
| keywords[1].score | 0.7808146476745605 |
| keywords[1].display_name | Robot |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6542980670928955 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6144177317619324 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[4].score | 0.6021897792816162 |
| keywords[4].display_name | Simultaneous localization and mapping |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5845947265625 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/ground-truth |
| keywords[6].score | 0.5196000933647156 |
| keywords[6].display_name | Ground truth |
| keywords[7].id | https://openalex.org/keywords/scalability |
| keywords[7].score | 0.5108508467674255 |
| keywords[7].display_name | Scalability |
| keywords[8].id | https://openalex.org/keywords/context |
| keywords[8].score | 0.48682230710983276 |
| keywords[8].display_name | Context (archaeology) |
| keywords[9].id | https://openalex.org/keywords/search-and-rescue |
| keywords[9].score | 0.4828687012195587 |
| keywords[9].display_name | Search and rescue |
| keywords[10].id | https://openalex.org/keywords/urban-search-and-rescue |
| keywords[10].score | 0.45889735221862793 |
| keywords[10].display_name | Urban search and rescue |
| keywords[11].id | https://openalex.org/keywords/lidar |
| keywords[11].score | 0.4485819637775421 |
| keywords[11].display_name | Lidar |
| keywords[12].id | https://openalex.org/keywords/terrain |
| keywords[12].score | 0.42075997591018677 |
| keywords[12].display_name | Terrain |
| keywords[13].id | https://openalex.org/keywords/real-time-computing |
| keywords[13].score | 0.3871249556541443 |
| keywords[13].display_name | Real-time computing |
| keywords[14].id | https://openalex.org/keywords/mobile-robot |
| keywords[14].score | 0.32425588369369507 |
| keywords[14].display_name | Mobile robot |
| keywords[15].id | https://openalex.org/keywords/remote-sensing |
| keywords[15].score | 0.24610435962677002 |
| keywords[15].display_name | Remote sensing |
| keywords[16].id | https://openalex.org/keywords/geography |
| keywords[16].score | 0.10293722152709961 |
| keywords[16].display_name | Geography |
| keywords[17].id | https://openalex.org/keywords/database |
| keywords[17].score | 0.10261455178260803 |
| keywords[17].display_name | Database |
| keywords[18].id | https://openalex.org/keywords/cartography |
| keywords[18].score | 0.08516272902488708 |
| keywords[18].display_name | Cartography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.13135 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.13135 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.13135 |
| locations[1].id | doi:10.48550/arxiv.2205.13135 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.13135 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5018338653 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9201-2938 |
| authorships[0].author.display_name | Yun Sil Chang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chang, Yun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5024992136 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4094-7077 |
| authorships[1].author.display_name | Kamak Ebadi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ebadi, Kamak |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049219750 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4188-5186 |
| authorships[2].author.display_name | Christopher E. Denniston |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Denniston, Christopher E. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5065759000 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4030-5151 |
| authorships[3].author.display_name | Muhammad Fadhil Ginting |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ginting, Muhammad Fadhil |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5113909824 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Antoni Rosinol |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rosinol, Antoni |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5035632598 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6905-200X |
| authorships[5].author.display_name | Andrzej Reinke |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Reinke, Andrzej |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5043798706 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8218-3346 |
| authorships[6].author.display_name | Matteo Palieri |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Palieri, Matteo |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5006694174 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6918-3237 |
| authorships[7].author.display_name | Jingnan Shi |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shi, Jingnan |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5105470082 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2895-6085 |
| authorships[8].author.display_name | A. Chatterjee |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chatterjee, Arghya |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5058359768 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9768-3615 |
| authorships[9].author.display_name | Benjamin Morrell |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Morrell, Benjamin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5042186658 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-5509-1841 |
| authorships[10].author.display_name | Ali‐akbar Agha‐mohammadi |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Agha-mohammadi, Ali-akbar |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5042157108 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Luca Carlone |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Carlone, Luca |
| authorships[11].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.13135 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W3174027453, https://openalex.org/W2970345194, https://openalex.org/W2117893626, https://openalex.org/W2065470608, https://openalex.org/W4386821976, https://openalex.org/W1488897159, https://openalex.org/W1979426194, https://openalex.org/W4313288997, https://openalex.org/W2807473852, https://openalex.org/W341083634 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.13135 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.13135 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.13135 |
| primary_location.id | pmh:oai:arXiv.org:2205.13135 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.13135 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.13135 |
| publication_date | 2022-05-26 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 67, 97, 116, 140, 154, 174, 190 |
| abstract_inverted_index.3D | 98 |
| abstract_inverted_index.In | 66 |
| abstract_inverted_index.To | 109 |
| abstract_inverted_index.We | 132, 188, 221 |
| abstract_inverted_index.an | 179 |
| abstract_inverted_index.as | 35, 236 |
| abstract_inverted_index.by | 121, 138 |
| abstract_inverted_index.in | 10, 29, 44, 72, 124, 206, 217 |
| abstract_inverted_index.is | 24, 40, 145 |
| abstract_inverted_index.of | 6, 61, 75, 100, 127 |
| abstract_inverted_index.on | 84, 115, 185, 194 |
| abstract_inverted_index.to | 42, 50, 95, 147, 158 |
| abstract_inverted_index.and | 1, 12, 19, 31, 52, 55, 58, 63, 71, 88, 92, 103, 106, 151, 161, 170, 173, 198, 200, 215 |
| abstract_inverted_index.can | 234 |
| abstract_inverted_index.due | 49 |
| abstract_inverted_index.for | 166, 239 |
| abstract_inverted_index.map | 99 |
| abstract_inverted_index.our | 134, 224 |
| abstract_inverted_index.the | 36, 59, 73, 79, 101, 125, 128, 195, 202, 218, 229 |
| abstract_inverted_index.(and | 228 |
| abstract_inverted_index.SLAM | 118 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.also | 222 |
| abstract_inverted_index.data | 87 |
| abstract_inverted_index.end, | 111 |
| abstract_inverted_index.loop | 163 |
| abstract_inverted_index.many | 27 |
| abstract_inverted_index.must | 82 |
| abstract_inverted_index.pose | 181 |
| abstract_inverted_index.rely | 83 |
| abstract_inverted_index.team | 5, 122 |
| abstract_inverted_index.that | 110, 144 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.with | 3, 26, 178 |
| abstract_inverted_index.(poor | 47 |
| abstract_inverted_index.DARPA | 129 |
| abstract_inverted_index.LAMP, | 137 |
| abstract_inverted_index.SLAM. | 242 |
| abstract_inverted_index.about | 78 |
| abstract_inverted_index.based | 184 |
| abstract_inverted_index.build | 96 |
| abstract_inverted_index.caves | 216 |
| abstract_inverted_index.dust, | 53 |
| abstract_inverted_index.faced | 25 |
| abstract_inverted_index.graph | 182 |
| abstract_inverted_index.large | 167 |
| abstract_inverted_index.lidar | 152 |
| abstract_inverted_index.muddy | 56 |
| abstract_inverted_index.noisy | 85 |
| abstract_inverted_index.paper | 113 |
| abstract_inverted_index.power | 213 |
| abstract_inverted_index.prior | 76 |
| abstract_inverted_index.scale | 168 |
| abstract_inverted_index.serve | 235 |
| abstract_inverted_index.study | 193 |
| abstract_inverted_index.which | 233 |
| abstract_inverted_index.work, | 136 |
| abstract_inverted_index.(SLAM) | 94 |
| abstract_inverted_index.CoSTAR | 123 |
| abstract_inverted_index.Search | 0 |
| abstract_inverted_index.United | 219 |
| abstract_inverted_index.across | 211 |
| abstract_inverted_index.assess | 201 |
| abstract_inverted_index.extend | 133 |
| abstract_inverted_index.ground | 231 |
| abstract_inverted_index.inter- | 160 |
| abstract_inverted_index.mines, | 212 |
| abstract_inverted_index.mobile | 8 |
| abstract_inverted_index.rescue | 2 |
| abstract_inverted_index.robots | 9, 81 |
| abstract_inverted_index.robust | 175 |
| abstract_inverted_index.rugged | 54 |
| abstract_inverted_index.sensor | 86 |
| abstract_inverted_index.system | 39, 119, 204 |
| abstract_inverted_index.teams, | 172 |
| abstract_inverted_index.Mapping | 93 |
| abstract_inverted_index.States. | 220 |
| abstract_inverted_index.absence | 74 |
| abstract_inverted_index.closure | 164 |
| abstract_inverted_index.complex | 30 |
| abstract_inverted_index.context | 126 |
| abstract_inverted_index.crucial | 22 |
| abstract_inverted_index.onboard | 37 |
| abstract_inverted_index.operate | 43 |
| abstract_inverted_index.overall | 203 |
| abstract_inverted_index.perform | 89 |
| abstract_inverted_index.plants, | 214 |
| abstract_inverted_index.provide | 189 |
| abstract_inverted_index.release | 223 |
| abstract_inverted_index.reports | 114 |
| abstract_inverted_index.sources | 150 |
| abstract_inverted_index.support | 159 |
| abstract_inverted_index.truth), | 232 |
| abstract_inverted_index.unknown | 11 |
| abstract_inverted_index.ablation | 192 |
| abstract_inverted_index.back-end | 176, 226 |
| abstract_inverted_index.darkness | 51 |
| abstract_inverted_index.datasets | 209, 227 |
| abstract_inverted_index.detailed | 191 |
| abstract_inverted_index.disaster | 68 |
| abstract_inverted_index.equipped | 177 |
| abstract_inverted_index.localize | 104 |
| abstract_inverted_index.mapping. | 20 |
| abstract_inverted_index.odometry | 149 |
| abstract_inverted_index.presence | 60 |
| abstract_inverted_index.previous | 135 |
| abstract_inverted_index.required | 41 |
| abstract_inverted_index.requires | 16 |
| abstract_inverted_index.response | 69 |
| abstract_inverted_index.scalable | 155 |
| abstract_inverted_index.scenario | 70 |
| abstract_inverted_index.scenes). | 65 |
| abstract_inverted_index.terrain, | 57 |
| abstract_inverted_index.Graduated | 186 |
| abstract_inverted_index.adaptable | 146 |
| abstract_inverted_index.ambiguous | 64 |
| abstract_inverted_index.back-end, | 199 |
| abstract_inverted_index.collected | 210 |
| abstract_inverted_index.detection | 165 |
| abstract_inverted_index.developed | 120 |
| abstract_inverted_index.different | 148 |
| abstract_inverted_index.front-end | 142, 157, 197 |
| abstract_inverted_index.interface | 143 |
| abstract_inverted_index.potential | 107 |
| abstract_inverted_index.Challenge. | 131 |
| abstract_inverted_index.benchmarks | 238 |
| abstract_inverted_index.challenges | 28 |
| abstract_inverted_index.conditions | 46 |
| abstract_inverted_index.perception | 38 |
| abstract_inverted_index.real-world | 208 |
| abstract_inverted_index.survivors. | 108 |
| abstract_inverted_index.themselves | 105 |
| abstract_inverted_index.visibility | 48 |
| abstract_inverted_index.challenging | 207, 237 |
| abstract_inverted_index.environment | 102 |
| abstract_inverted_index.information | 77 |
| abstract_inverted_index.intra-robot | 162 |
| abstract_inverted_index.large-scale | 13, 240 |
| abstract_inverted_index.multi-robot | 117, 156, 171, 196, 225 |
| abstract_inverted_index.off-nominal | 45 |
| abstract_inverted_index.performance | 205 |
| abstract_inverted_index.requirement | 23 |
| abstract_inverted_index.underground | 14, 241 |
| abstract_inverted_index.Localization | 91 |
| abstract_inverted_index.Simultaneous | 90 |
| abstract_inverted_index.Subterranean | 130 |
| abstract_inverted_index.environment, | 80 |
| abstract_inverted_index.environments | 15, 169 |
| abstract_inverted_index.localization | 18 |
| abstract_inverted_index.optimization | 183 |
| abstract_inverted_index.self-similar | 62 |
| abstract_inverted_index.single-robot | 141 |
| abstract_inverted_index.subterranean | 33 |
| abstract_inverted_index.corresponding | 230 |
| abstract_inverted_index.environments, | 34 |
| abstract_inverted_index.heterogeneous | 7 |
| abstract_inverted_index.incorporating | 139 |
| abstract_inverted_index.Non-Convexity. | 187 |
| abstract_inverted_index.high-precision | 17 |
| abstract_inverted_index.configurations, | 153 |
| abstract_inverted_index.outlier-resilient | 180 |
| abstract_inverted_index.perceptually-degraded | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |