LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of\n Perceptually-Degraded Subterranean Environments Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.01744
Simultaneous Localization and Mapping (SLAM) in large-scale, unknown, and\ncomplex subterranean environments is a challenging problem. Sensors must\noperate in off-nominal conditions; uneven and slippery terrains make wheel\nodometry inaccurate, while long corridors without salient features make\nexteroceptive sensing ambiguous and prone to drift; finally, spurious loop\nclosures that are frequent in environments with repetitive appearance, such as\ntunnels and mines, could result in a significant distortion of the entire map.\nThese challenges are in stark contrast with the need to build highly-accurate\n3D maps to support a wide variety of applications, ranging from disaster\nresponse to the exploration of underground extraterrestrial worlds. This paper\nreports on the implementation and testing of a lidar-based multi-robot SLAM\nsystem developed in the context of the DARPA Subterranean Challenge. We present\na system architecture to enhance subterranean operation, including an accurate\nlidar-based front-end, and a flexible and robust back-end that automatically\nrejects outlying loop closures. We present an extensive evaluation in\nlarge-scale, challenging subterranean environments, including the results\nobtained in the Tunnel Circuit of the DARPA Subterranean Challenge. Finally, we\ndiscuss potential improvements, limitations of the state of the art, and future\nresearch directions.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.01744
- https://arxiv.org/pdf/2003.01744
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286783894
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286783894Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.01744Digital Object Identifier
- Title
-
LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of\n Perceptually-Degraded Subterranean EnvironmentsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-03Full publication date if available
- Authors
-
Kamak Ebadi, Yun Sil Chang, Matteo Palieri, Alex Stephens, Alex Hatteland, Eric Heiden, Abhishek Thakur, Nobuhiro Funabiki, Benjamin Morrell, Sally L. Wood, Luca Carlone, Ali‐akbar Agha‐mohammadiList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.01744Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.01744Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.01744Direct OA link when available
- Concepts
-
Lidar, Computer science, Context (archaeology), Odometry, Ranging, Simultaneous localization and mapping, Salient, Scale (ratio), Artificial intelligence, Terrain, Computer vision, Robot, Spurious relationship, Remote sensing, Geology, Mobile robot, Cartography, Machine learning, Geography, Telecommunications, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286783894 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.01744 |
| ids.openalex | https://openalex.org/W4286783894 |
| fwci | 0.29866062 |
| type | preprint |
| title | LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of\n Perceptually-Degraded Subterranean Environments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T10326 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Indoor and Outdoor Localization Technologies |
| topics[2].id | https://openalex.org/T11211 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | 3D Surveying and Cultural Heritage |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51399673 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6807567477226257 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[0].display_name | Lidar |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6496452689170837 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6153224110603333 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C49441653 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5646757483482361 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2014717 |
| concepts[3].display_name | Odometry |
| concepts[4].id | https://openalex.org/C115051666 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5624386668205261 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6522493 |
| concepts[4].display_name | Ranging |
| concepts[5].id | https://openalex.org/C86369673 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5347574949264526 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1203659 |
| concepts[5].display_name | Simultaneous localization and mapping |
| concepts[6].id | https://openalex.org/C2780719617 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5269623398780823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[6].display_name | Salient |
| concepts[7].id | https://openalex.org/C2778755073 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5219040513038635 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[7].display_name | Scale (ratio) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5079300999641418 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C161840515 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4988713264465332 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[9].display_name | Terrain |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4709300398826599 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C90509273 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42901909351348877 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[11].display_name | Robot |
| concepts[12].id | https://openalex.org/C97256817 |
| concepts[12].level | 2 |
| concepts[12].score | 0.418556272983551 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[12].display_name | Spurious relationship |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3742612302303314 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2365255057811737 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C19966478 |
| concepts[15].level | 3 |
| concepts[15].score | 0.15775015950202942 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[15].display_name | Mobile robot |
| concepts[16].id | https://openalex.org/C58640448 |
| concepts[16].level | 1 |
| concepts[16].score | 0.12225985527038574 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[16].display_name | Cartography |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.12096837162971497 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1198669970035553 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C76155785 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[19].display_name | Telecommunications |
| concepts[20].id | https://openalex.org/C151730666 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[20].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/lidar |
| keywords[0].score | 0.6807567477226257 |
| keywords[0].display_name | Lidar |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6496452689170837 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6153224110603333 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/odometry |
| keywords[3].score | 0.5646757483482361 |
| keywords[3].display_name | Odometry |
| keywords[4].id | https://openalex.org/keywords/ranging |
| keywords[4].score | 0.5624386668205261 |
| keywords[4].display_name | Ranging |
| keywords[5].id | https://openalex.org/keywords/simultaneous-localization-and-mapping |
| keywords[5].score | 0.5347574949264526 |
| keywords[5].display_name | Simultaneous localization and mapping |
| keywords[6].id | https://openalex.org/keywords/salient |
| keywords[6].score | 0.5269623398780823 |
| keywords[6].display_name | Salient |
| keywords[7].id | https://openalex.org/keywords/scale |
| keywords[7].score | 0.5219040513038635 |
| keywords[7].display_name | Scale (ratio) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.5079300999641418 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/terrain |
| keywords[9].score | 0.4988713264465332 |
| keywords[9].display_name | Terrain |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.4709300398826599 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/robot |
| keywords[11].score | 0.42901909351348877 |
| keywords[11].display_name | Robot |
| keywords[12].id | https://openalex.org/keywords/spurious-relationship |
| keywords[12].score | 0.418556272983551 |
| keywords[12].display_name | Spurious relationship |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.3742612302303314 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.2365255057811737 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/mobile-robot |
| keywords[15].score | 0.15775015950202942 |
| keywords[15].display_name | Mobile robot |
| keywords[16].id | https://openalex.org/keywords/cartography |
| keywords[16].score | 0.12225985527038574 |
| keywords[16].display_name | Cartography |
| keywords[17].id | https://openalex.org/keywords/machine-learning |
| keywords[17].score | 0.12096837162971497 |
| keywords[17].display_name | Machine learning |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.1198669970035553 |
| keywords[18].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.01744 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.01744 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.01744 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5024992136 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4094-7077 |
| authorships[0].author.display_name | Kamak Ebadi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ebadi, Kamak |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018338653 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9201-2938 |
| authorships[1].author.display_name | Yun Sil Chang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chang, Yun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043798706 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8218-3346 |
| authorships[2].author.display_name | Matteo Palieri |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Palieri, Matteo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5035400590 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Alex Stephens |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephens, Alex |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034893278 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Alex Hatteland |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hatteland, Alex |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5073253090 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2031-8564 |
| authorships[5].author.display_name | Eric Heiden |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Heiden, Eric |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5107980345 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4149-1312 |
| authorships[6].author.display_name | Abhishek Thakur |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Thakur, Abhishek |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5022141264 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4713-9689 |
| authorships[7].author.display_name | Nobuhiro Funabiki |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Funabiki, Nobuhiro |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5058359768 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-9768-3615 |
| authorships[8].author.display_name | Benjamin Morrell |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Morrell, Benjamin |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5024989516 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8183-9809 |
| authorships[9].author.display_name | Sally L. Wood |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Wood, Sally |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5042157108 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Luca Carlone |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Carlone, Luca |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5042186658 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-5509-1841 |
| authorships[11].author.display_name | Ali‐akbar Agha‐mohammadi |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Agha-mohammadi, Ali-akbar |
| authorships[11].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.01744 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | LAMP: Large-Scale Autonomous Mapping and Positioning for Exploration of\n Perceptually-Degraded Subterranean Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-27T03:07:04.448195 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2783354812, https://openalex.org/W4312958259, https://openalex.org/W2103009189, https://openalex.org/W2970345194, https://openalex.org/W4386821976, https://openalex.org/W4313288997, https://openalex.org/W2807473852, https://openalex.org/W2149015029, https://openalex.org/W48401697, https://openalex.org/W2152464524 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.01744 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.01744 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.01744 |
| primary_location.id | pmh:oai:arXiv.org:2003.01744 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.01744 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.01744 |
| publication_date | 2020-03-03 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 12, 58, 79, 102, 128 |
| abstract_inverted_index.We | 115, 138 |
| abstract_inverted_index.an | 124, 140 |
| abstract_inverted_index.in | 5, 17, 46, 57, 67, 107, 150 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.of | 61, 82, 90, 101, 110, 154, 164, 167 |
| abstract_inverted_index.on | 96 |
| abstract_inverted_index.to | 38, 73, 77, 87, 119 |
| abstract_inverted_index.and | 2, 21, 36, 53, 99, 127, 130, 170 |
| abstract_inverted_index.are | 44, 66 |
| abstract_inverted_index.the | 62, 71, 88, 97, 108, 111, 148, 151, 155, 165, 168 |
| abstract_inverted_index.This | 94 |
| abstract_inverted_index.art, | 169 |
| abstract_inverted_index.from | 85 |
| abstract_inverted_index.long | 28 |
| abstract_inverted_index.loop | 136 |
| abstract_inverted_index.make | 24 |
| abstract_inverted_index.maps | 76 |
| abstract_inverted_index.need | 72 |
| abstract_inverted_index.such | 51 |
| abstract_inverted_index.that | 43, 133 |
| abstract_inverted_index.wide | 80 |
| abstract_inverted_index.with | 48, 70 |
| abstract_inverted_index.DARPA | 112, 156 |
| abstract_inverted_index.build | 74 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.prone | 37 |
| abstract_inverted_index.stark | 68 |
| abstract_inverted_index.state | 166 |
| abstract_inverted_index.while | 27 |
| abstract_inverted_index.(SLAM) | 4 |
| abstract_inverted_index.Tunnel | 152 |
| abstract_inverted_index.drift; | 39 |
| abstract_inverted_index.entire | 63 |
| abstract_inverted_index.mines, | 54 |
| abstract_inverted_index.result | 56 |
| abstract_inverted_index.robust | 131 |
| abstract_inverted_index.system | 117 |
| abstract_inverted_index.uneven | 20 |
| abstract_inverted_index.Circuit | 153 |
| abstract_inverted_index.Mapping | 3 |
| abstract_inverted_index.Sensors | 15 |
| abstract_inverted_index.context | 109 |
| abstract_inverted_index.enhance | 120 |
| abstract_inverted_index.present | 139 |
| abstract_inverted_index.ranging | 84 |
| abstract_inverted_index.salient | 31 |
| abstract_inverted_index.sensing | 34 |
| abstract_inverted_index.support | 78 |
| abstract_inverted_index.testing | 100 |
| abstract_inverted_index.variety | 81 |
| abstract_inverted_index.without | 30 |
| abstract_inverted_index.worlds. | 93 |
| abstract_inverted_index.Finally, | 159 |
| abstract_inverted_index.back-end | 132 |
| abstract_inverted_index.contrast | 69 |
| abstract_inverted_index.features | 32 |
| abstract_inverted_index.finally, | 40 |
| abstract_inverted_index.flexible | 129 |
| abstract_inverted_index.frequent | 45 |
| abstract_inverted_index.outlying | 135 |
| abstract_inverted_index.problem. | 14 |
| abstract_inverted_index.slippery | 22 |
| abstract_inverted_index.spurious | 41 |
| abstract_inverted_index.terrains | 23 |
| abstract_inverted_index.unknown, | 7 |
| abstract_inverted_index.ambiguous | 35 |
| abstract_inverted_index.closures. | 137 |
| abstract_inverted_index.corridors | 29 |
| abstract_inverted_index.developed | 106 |
| abstract_inverted_index.extensive | 141 |
| abstract_inverted_index.including | 123, 147 |
| abstract_inverted_index.potential | 161 |
| abstract_inverted_index.Challenge. | 114, 158 |
| abstract_inverted_index.challenges | 65 |
| abstract_inverted_index.distortion | 60 |
| abstract_inverted_index.evaluation | 142 |
| abstract_inverted_index.front-end, | 126 |
| abstract_inverted_index.operation, | 122 |
| abstract_inverted_index.present\na | 116 |
| abstract_inverted_index.repetitive | 49 |
| abstract_inverted_index.appearance, | 50 |
| abstract_inverted_index.as\ntunnels | 52 |
| abstract_inverted_index.challenging | 13, 144 |
| abstract_inverted_index.conditions; | 19 |
| abstract_inverted_index.exploration | 89 |
| abstract_inverted_index.inaccurate, | 26 |
| abstract_inverted_index.lidar-based | 103 |
| abstract_inverted_index.limitations | 163 |
| abstract_inverted_index.map.\nThese | 64 |
| abstract_inverted_index.multi-robot | 104 |
| abstract_inverted_index.off-nominal | 18 |
| abstract_inverted_index.significant | 59 |
| abstract_inverted_index.underground | 91 |
| abstract_inverted_index.we\ndiscuss | 160 |
| abstract_inverted_index.Localization | 1 |
| abstract_inverted_index.SLAM\nsystem | 105 |
| abstract_inverted_index.Simultaneous | 0 |
| abstract_inverted_index.Subterranean | 113, 157 |
| abstract_inverted_index.and\ncomplex | 8 |
| abstract_inverted_index.architecture | 118 |
| abstract_inverted_index.environments | 10, 47 |
| abstract_inverted_index.large-scale, | 6 |
| abstract_inverted_index.subterranean | 9, 121, 145 |
| abstract_inverted_index.applications, | 83 |
| abstract_inverted_index.directions.\n | 172 |
| abstract_inverted_index.environments, | 146 |
| abstract_inverted_index.improvements, | 162 |
| abstract_inverted_index.must\noperate | 16 |
| abstract_inverted_index.implementation | 98 |
| abstract_inverted_index.loop\nclosures | 42 |
| abstract_inverted_index.paper\nreports | 95 |
| abstract_inverted_index.wheel\nodometry | 25 |
| abstract_inverted_index.extraterrestrial | 92 |
| abstract_inverted_index.future\nresearch | 171 |
| abstract_inverted_index.in\nlarge-scale, | 143 |
| abstract_inverted_index.results\nobtained | 149 |
| abstract_inverted_index.disaster\nresponse | 86 |
| abstract_inverted_index.highly-accurate\n3D | 75 |
| abstract_inverted_index.make\nexteroceptive | 33 |
| abstract_inverted_index.accurate\nlidar-based | 125 |
| abstract_inverted_index.automatically\nrejects | 134 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.76321047 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |