Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes Article Swipe
YOU?
·
· 2025
· Open Access
·
Embedding a language field in a 3D representation enables richer semantic understanding of spatial environments by linking geometry with descriptive meaning. This allows for a more intuitive human-computer interaction, enabling querying or editing scenes using natural language, and could potentially improve tasks like scene retrieval, navigation, and multimodal reasoning. While such capabilities could be transformative, in particular for large-scale scenes, we find that recent feature distillation approaches cannot effectively learn over massive Internet data due to challenges in semantic feature misalignment and inefficiency in memory and runtime. To this end, we propose a novel approach to address these challenges. First, we introduce extremely low-dimensional semantic bottleneck features as part of the underlying 3D Gaussian representation. These are processed by rendering and passing them through a multi-resolution, feature-based, hash encoder. This significantly improves efficiency both in runtime and GPU memory. Second, we introduce an Attenuated Downsampler module and propose several regularizations addressing the semantic misalignment of ground truth 2D features. We evaluate our method on the in-the-wild HolyScenes dataset and demonstrate that it surpasses existing approaches in both performance and efficiency.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2512.07807
- https://arxiv.org/pdf/2512.07807
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7113916048
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7113916048Canonical identifier for this work in OpenAlex
- Title
-
Lang3D-XL: Language Embedded 3D Gaussians for Large-scale ScenesWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-08Full publication date if available
- Authors
-
Krakovsky, Shai, Fiebelman, Gal, Benaim, Sagie, Averbuch-Elor, HadarList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.07807Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.07807Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.07807Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Embedding, Bottleneck, Rendering (computer graphics), Ground truth, Heuristics, Feature (linguistics), Natural language, Representation (politics), Semantic feature, Natural language processing, Natural language understanding, Field (mathematics), Semantic gap, Semantic computing, Hash function, Bridging (networking), Feature extraction, Computer vision, Semantic interpretation, Search engine indexing, Exploit, Visual reasoning, Machine learning, Semantics (computer science), Semantic mapping, Annotation, Robustness (evolution), Visualization, Image editing, Hash table, Semantic search, Word embedding, GaussianTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7113916048 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7113916048 |
| fwci | 0.0 |
| type | article |
| title | Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.5097758769989014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.1144297644495964 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.10954948514699936 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8585792183876038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.546906590461731 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41608201 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5373995900154114 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[2].display_name | Embedding |
| concepts[3].id | https://openalex.org/C2780513914 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5025889873504639 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[3].display_name | Bottleneck |
| concepts[4].id | https://openalex.org/C205711294 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48806294798851013 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[4].display_name | Rendering (computer graphics) |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.467501699924469 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C127705205 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4313915967941284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[6].display_name | Heuristics |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42935290932655334 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C195324797 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4082184135913849 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[8].display_name | Natural language |
| concepts[9].id | https://openalex.org/C2776359362 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4013199508190155 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[9].display_name | Representation (politics) |
| concepts[10].id | https://openalex.org/C2781122975 |
| concepts[10].level | 2 |
| concepts[10].score | 0.382071852684021 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q16928266 |
| concepts[10].display_name | Semantic feature |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3708413541316986 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C2779439875 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3633808195590973 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[12].display_name | Natural language understanding |
| concepts[13].id | https://openalex.org/C9652623 |
| concepts[13].level | 2 |
| concepts[13].score | 0.35355401039123535 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[13].display_name | Field (mathematics) |
| concepts[14].id | https://openalex.org/C86034646 |
| concepts[14].level | 4 |
| concepts[14].score | 0.3508151173591614 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q474311 |
| concepts[14].display_name | Semantic gap |
| concepts[15].id | https://openalex.org/C511149849 |
| concepts[15].level | 3 |
| concepts[15].score | 0.347005158662796 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7449051 |
| concepts[15].display_name | Semantic computing |
| concepts[16].id | https://openalex.org/C99138194 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3426884114742279 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q183427 |
| concepts[16].display_name | Hash function |
| concepts[17].id | https://openalex.org/C174348530 |
| concepts[17].level | 2 |
| concepts[17].score | 0.34079623222351074 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q188635 |
| concepts[17].display_name | Bridging (networking) |
| concepts[18].id | https://openalex.org/C52622490 |
| concepts[18].level | 2 |
| concepts[18].score | 0.3362869620323181 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[18].display_name | Feature extraction |
| concepts[19].id | https://openalex.org/C31972630 |
| concepts[19].level | 1 |
| concepts[19].score | 0.3282908797264099 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[19].display_name | Computer vision |
| concepts[20].id | https://openalex.org/C193125573 |
| concepts[20].level | 2 |
| concepts[20].score | 0.313293993473053 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7449065 |
| concepts[20].display_name | Semantic interpretation |
| concepts[21].id | https://openalex.org/C75165309 |
| concepts[21].level | 2 |
| concepts[21].score | 0.3091035485267639 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2258979 |
| concepts[21].display_name | Search engine indexing |
| concepts[22].id | https://openalex.org/C165696696 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2892672121524811 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[22].display_name | Exploit |
| concepts[23].id | https://openalex.org/C2777508537 |
| concepts[23].level | 2 |
| concepts[23].score | 0.28791892528533936 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q7936620 |
| concepts[23].display_name | Visual reasoning |
| concepts[24].id | https://openalex.org/C119857082 |
| concepts[24].level | 1 |
| concepts[24].score | 0.2875966429710388 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[24].display_name | Machine learning |
| concepts[25].id | https://openalex.org/C184337299 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2842664122581482 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q1437428 |
| concepts[25].display_name | Semantics (computer science) |
| concepts[26].id | https://openalex.org/C2775955345 |
| concepts[26].level | 2 |
| concepts[26].score | 0.28074193000793457 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q7449071 |
| concepts[26].display_name | Semantic mapping |
| concepts[27].id | https://openalex.org/C2776321320 |
| concepts[27].level | 2 |
| concepts[27].score | 0.27872148156166077 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q857525 |
| concepts[27].display_name | Annotation |
| concepts[28].id | https://openalex.org/C63479239 |
| concepts[28].level | 3 |
| concepts[28].score | 0.2716566324234009 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[28].display_name | Robustness (evolution) |
| concepts[29].id | https://openalex.org/C36464697 |
| concepts[29].level | 2 |
| concepts[29].score | 0.26705726981163025 |
| concepts[29].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[29].display_name | Visualization |
| concepts[30].id | https://openalex.org/C2776674983 |
| concepts[30].level | 3 |
| concepts[30].score | 0.25885218381881714 |
| concepts[30].wikidata | https://www.wikidata.org/wiki/Q545981 |
| concepts[30].display_name | Image editing |
| concepts[31].id | https://openalex.org/C67388219 |
| concepts[31].level | 3 |
| concepts[31].score | 0.2586626708507538 |
| concepts[31].wikidata | https://www.wikidata.org/wiki/Q207440 |
| concepts[31].display_name | Hash table |
| concepts[32].id | https://openalex.org/C166423231 |
| concepts[32].level | 3 |
| concepts[32].score | 0.257519006729126 |
| concepts[32].wikidata | https://www.wikidata.org/wiki/Q1891170 |
| concepts[32].display_name | Semantic search |
| concepts[33].id | https://openalex.org/C2777462759 |
| concepts[33].level | 3 |
| concepts[33].score | 0.25413942337036133 |
| concepts[33].wikidata | https://www.wikidata.org/wiki/Q18395344 |
| concepts[33].display_name | Word embedding |
| concepts[34].id | https://openalex.org/C163716315 |
| concepts[34].level | 2 |
| concepts[34].score | 0.2511926591396332 |
| concepts[34].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[34].display_name | Gaussian |
| keywords[0].id | https://openalex.org/keywords/embedding |
| keywords[0].score | 0.5373995900154114 |
| keywords[0].display_name | Embedding |
| keywords[1].id | https://openalex.org/keywords/bottleneck |
| keywords[1].score | 0.5025889873504639 |
| keywords[1].display_name | Bottleneck |
| keywords[2].id | https://openalex.org/keywords/rendering |
| keywords[2].score | 0.48806294798851013 |
| keywords[2].display_name | Rendering (computer graphics) |
| keywords[3].id | https://openalex.org/keywords/ground-truth |
| keywords[3].score | 0.467501699924469 |
| keywords[3].display_name | Ground truth |
| keywords[4].id | https://openalex.org/keywords/heuristics |
| keywords[4].score | 0.4313915967941284 |
| keywords[4].display_name | Heuristics |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.42935290932655334 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/natural-language |
| keywords[6].score | 0.4082184135913849 |
| keywords[6].display_name | Natural language |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.4013199508190155 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/semantic-feature |
| keywords[8].score | 0.382071852684021 |
| keywords[8].display_name | Semantic feature |
| keywords[9].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[9].score | 0.3633808195590973 |
| keywords[9].display_name | Natural language understanding |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.07807 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.07807 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.07807 |
| indexed_in | arxiv |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Krakovsky, Shai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Krakovsky, Shai |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Fiebelman, Gal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fiebelman, Gal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Benaim, Sagie |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Benaim, Sagie |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Averbuch-Elor, Hadar |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Averbuch-Elor, Hadar |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.07807 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-11T00:00:00 |
| display_name | Lang3D-XL: Language Embedded 3D Gaussians for Large-scale Scenes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T00:24:52.286860 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.5097758769989014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.07807 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.07807 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.07807 |
| primary_location.id | pmh:oai:arXiv.org:2512.07807 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.07807 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.07807 |
| publication_date | 2025-12-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 1, 5, 24, 92, 124 |
| abstract_inverted_index.2D | 157 |
| abstract_inverted_index.3D | 6, 112 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.We | 159 |
| abstract_inverted_index.an | 142 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.be | 53 |
| abstract_inverted_index.by | 15, 118 |
| abstract_inverted_index.in | 4, 55, 77, 83, 134, 175 |
| abstract_inverted_index.it | 171 |
| abstract_inverted_index.of | 12, 109, 154 |
| abstract_inverted_index.on | 163 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 75, 95 |
| abstract_inverted_index.we | 60, 90, 100, 140 |
| abstract_inverted_index.GPU | 137 |
| abstract_inverted_index.and | 37, 46, 81, 85, 120, 136, 146, 168, 178 |
| abstract_inverted_index.are | 116 |
| abstract_inverted_index.due | 74 |
| abstract_inverted_index.for | 23, 57 |
| abstract_inverted_index.our | 161 |
| abstract_inverted_index.the | 110, 151, 164 |
| abstract_inverted_index.This | 21, 129 |
| abstract_inverted_index.both | 133, 176 |
| abstract_inverted_index.data | 73 |
| abstract_inverted_index.end, | 89 |
| abstract_inverted_index.find | 61 |
| abstract_inverted_index.hash | 127 |
| abstract_inverted_index.like | 42 |
| abstract_inverted_index.more | 25 |
| abstract_inverted_index.over | 70 |
| abstract_inverted_index.part | 108 |
| abstract_inverted_index.such | 50 |
| abstract_inverted_index.that | 62, 170 |
| abstract_inverted_index.them | 122 |
| abstract_inverted_index.this | 88 |
| abstract_inverted_index.with | 18 |
| abstract_inverted_index.These | 115 |
| abstract_inverted_index.While | 49 |
| abstract_inverted_index.could | 38, 52 |
| abstract_inverted_index.field | 3 |
| abstract_inverted_index.learn | 69 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.scene | 43 |
| abstract_inverted_index.tasks | 41 |
| abstract_inverted_index.these | 97 |
| abstract_inverted_index.truth | 156 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.First, | 99 |
| abstract_inverted_index.allows | 22 |
| abstract_inverted_index.cannot | 67 |
| abstract_inverted_index.ground | 155 |
| abstract_inverted_index.memory | 84 |
| abstract_inverted_index.method | 162 |
| abstract_inverted_index.module | 145 |
| abstract_inverted_index.recent | 63 |
| abstract_inverted_index.richer | 9 |
| abstract_inverted_index.scenes | 33 |
| abstract_inverted_index.Second, | 139 |
| abstract_inverted_index.address | 96 |
| abstract_inverted_index.dataset | 167 |
| abstract_inverted_index.editing | 32 |
| abstract_inverted_index.enables | 8 |
| abstract_inverted_index.feature | 64, 79 |
| abstract_inverted_index.improve | 40 |
| abstract_inverted_index.linking | 16 |
| abstract_inverted_index.massive | 71 |
| abstract_inverted_index.memory. | 138 |
| abstract_inverted_index.natural | 35 |
| abstract_inverted_index.passing | 121 |
| abstract_inverted_index.propose | 91, 147 |
| abstract_inverted_index.runtime | 135 |
| abstract_inverted_index.scenes, | 59 |
| abstract_inverted_index.several | 148 |
| abstract_inverted_index.spatial | 13 |
| abstract_inverted_index.through | 123 |
| abstract_inverted_index.Gaussian | 113 |
| abstract_inverted_index.Internet | 72 |
| abstract_inverted_index.approach | 94 |
| abstract_inverted_index.enabling | 29 |
| abstract_inverted_index.encoder. | 128 |
| abstract_inverted_index.evaluate | 160 |
| abstract_inverted_index.existing | 173 |
| abstract_inverted_index.features | 106 |
| abstract_inverted_index.geometry | 17 |
| abstract_inverted_index.improves | 131 |
| abstract_inverted_index.language | 2 |
| abstract_inverted_index.meaning. | 20 |
| abstract_inverted_index.querying | 30 |
| abstract_inverted_index.runtime. | 86 |
| abstract_inverted_index.semantic | 10, 78, 104, 152 |
| abstract_inverted_index.Embedding | 0 |
| abstract_inverted_index.extremely | 102 |
| abstract_inverted_index.features. | 158 |
| abstract_inverted_index.introduce | 101, 141 |
| abstract_inverted_index.intuitive | 26 |
| abstract_inverted_index.language, | 36 |
| abstract_inverted_index.processed | 117 |
| abstract_inverted_index.rendering | 119 |
| abstract_inverted_index.surpasses | 172 |
| abstract_inverted_index.Attenuated | 143 |
| abstract_inverted_index.HolyScenes | 166 |
| abstract_inverted_index.addressing | 150 |
| abstract_inverted_index.approaches | 66, 174 |
| abstract_inverted_index.bottleneck | 105 |
| abstract_inverted_index.challenges | 76 |
| abstract_inverted_index.efficiency | 132 |
| abstract_inverted_index.multimodal | 47 |
| abstract_inverted_index.particular | 56 |
| abstract_inverted_index.reasoning. | 48 |
| abstract_inverted_index.retrieval, | 44 |
| abstract_inverted_index.underlying | 111 |
| abstract_inverted_index.Downsampler | 144 |
| abstract_inverted_index.challenges. | 98 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.descriptive | 19 |
| abstract_inverted_index.effectively | 68 |
| abstract_inverted_index.efficiency. | 179 |
| abstract_inverted_index.in-the-wild | 165 |
| abstract_inverted_index.large-scale | 58 |
| abstract_inverted_index.navigation, | 45 |
| abstract_inverted_index.performance | 177 |
| abstract_inverted_index.potentially | 39 |
| abstract_inverted_index.capabilities | 51 |
| abstract_inverted_index.distillation | 65 |
| abstract_inverted_index.environments | 14 |
| abstract_inverted_index.inefficiency | 82 |
| abstract_inverted_index.interaction, | 28 |
| abstract_inverted_index.misalignment | 80, 153 |
| abstract_inverted_index.significantly | 130 |
| abstract_inverted_index.understanding | 11 |
| abstract_inverted_index.feature-based, | 126 |
| abstract_inverted_index.human-computer | 27 |
| abstract_inverted_index.representation | 7 |
| abstract_inverted_index.low-dimensional | 103 |
| abstract_inverted_index.regularizations | 149 |
| abstract_inverted_index.representation. | 114 |
| abstract_inverted_index.transformative, | 54 |
| abstract_inverted_index.multi-resolution, | 125 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.78303199 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |