Language Model Classifier Aligns Better with Physician Word Sensitivity than XGBoost on Readmission Prediction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.07047
Traditional evaluation metrics for classification in natural language processing such as accuracy and area under the curve fail to differentiate between models with different predictive behaviors despite their similar performance metrics. We introduce sensitivity score, a metric that scrutinizes models' behaviors at the vocabulary level to provide insights into disparities in their decision-making logic. We assess the sensitivity score on a set of representative words in the test set using two classifiers trained for hospital readmission classification with similar performance statistics. Our experiments compare the decision-making logic of clinicians and classifiers based on rank correlations of sensitivity scores. The results indicate that the language model's sensitivity score aligns better with the professionals than the xgboost classifier on tf-idf embeddings, which suggests that xgboost uses some spurious features. Overall, this metric offers a novel perspective on assessing models' robustness by quantifying their discrepancy with professional opinions. Our code is available on GitHub (https://github.com/nyuolab/Model_Sensitivity).
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.07047
- https://arxiv.org/pdf/2211.07047
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309289584
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309289584Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.07047Digital Object Identifier
- Title
-
Language Model Classifier Aligns Better with Physician Word Sensitivity than XGBoost on Readmission PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-13Full publication date if available
- Authors
-
Grace Yang, Ming Cao, Lavender Yao Jiang, Xujin Chris Liu, Alexander T. M. Cheung, Hannah Weiss, David B. Kurland, Kyunghyun Cho, Eric K. OermannList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.07047Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.07047Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.07047Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Classifier (UML), Vocabulary, Machine learning, Test set, Robustness (evolution), Spurious relationship, Metric (unit), Sensitivity (control systems), F1 score, Rank (graph theory), Natural language processing, Mathematics, Electronic engineering, Combinatorics, Gene, Economics, Operations management, Chemistry, Biochemistry, Engineering, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309289584 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.07047 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.07047 |
| ids.openalex | https://openalex.org/W4309289584 |
| fwci | |
| type | preprint |
| title | Language Model Classifier Aligns Better with Physician Word Sensitivity than XGBoost on Readmission Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9879999756813049 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9753999710083008 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9672999978065491 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6478191018104553 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6248798370361328 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C95623464 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6154136061668396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[2].display_name | Classifier (UML) |
| concepts[3].id | https://openalex.org/C2777601683 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6079812049865723 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6499736 |
| concepts[3].display_name | Vocabulary |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5851573944091797 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C169903167 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5302780866622925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[5].display_name | Test set |
| concepts[6].id | https://openalex.org/C63479239 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5127135515213013 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[6].display_name | Robustness (evolution) |
| concepts[7].id | https://openalex.org/C97256817 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5077860951423645 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1462316 |
| concepts[7].display_name | Spurious relationship |
| concepts[8].id | https://openalex.org/C176217482 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47754013538360596 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[8].display_name | Metric (unit) |
| concepts[9].id | https://openalex.org/C21200559 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4449387490749359 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[9].display_name | Sensitivity (control systems) |
| concepts[10].id | https://openalex.org/C148524875 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42960861325263977 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6975395 |
| concepts[10].display_name | F1 score |
| concepts[11].id | https://openalex.org/C164226766 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4125858545303345 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[11].display_name | Rank (graph theory) |
| concepts[12].id | https://openalex.org/C204321447 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3944849967956543 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[12].display_name | Natural language processing |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1516992151737213 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C24326235 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[14].display_name | Electronic engineering |
| concepts[15].id | https://openalex.org/C114614502 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[15].display_name | Combinatorics |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C21547014 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[18].display_name | Operations management |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C55493867 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[20].display_name | Biochemistry |
| concepts[21].id | https://openalex.org/C127413603 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[21].display_name | Engineering |
| concepts[22].id | https://openalex.org/C138885662 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[22].display_name | Philosophy |
| concepts[23].id | https://openalex.org/C41895202 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[23].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6478191018104553 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6248798370361328 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/classifier |
| keywords[2].score | 0.6154136061668396 |
| keywords[2].display_name | Classifier (UML) |
| keywords[3].id | https://openalex.org/keywords/vocabulary |
| keywords[3].score | 0.6079812049865723 |
| keywords[3].display_name | Vocabulary |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5851573944091797 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/test-set |
| keywords[5].score | 0.5302780866622925 |
| keywords[5].display_name | Test set |
| keywords[6].id | https://openalex.org/keywords/robustness |
| keywords[6].score | 0.5127135515213013 |
| keywords[6].display_name | Robustness (evolution) |
| keywords[7].id | https://openalex.org/keywords/spurious-relationship |
| keywords[7].score | 0.5077860951423645 |
| keywords[7].display_name | Spurious relationship |
| keywords[8].id | https://openalex.org/keywords/metric |
| keywords[8].score | 0.47754013538360596 |
| keywords[8].display_name | Metric (unit) |
| keywords[9].id | https://openalex.org/keywords/sensitivity |
| keywords[9].score | 0.4449387490749359 |
| keywords[9].display_name | Sensitivity (control systems) |
| keywords[10].id | https://openalex.org/keywords/f1-score |
| keywords[10].score | 0.42960861325263977 |
| keywords[10].display_name | F1 score |
| keywords[11].id | https://openalex.org/keywords/rank |
| keywords[11].score | 0.4125858545303345 |
| keywords[11].display_name | Rank (graph theory) |
| keywords[12].id | https://openalex.org/keywords/natural-language-processing |
| keywords[12].score | 0.3944849967956543 |
| keywords[12].display_name | Natural language processing |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.1516992151737213 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.07047 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.07047 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.07047 |
| locations[1].id | doi:10.48550/arxiv.2211.07047 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.07047 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103412589 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Grace Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Grace |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5021403340 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5472-562X |
| authorships[1].author.display_name | Ming Cao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cao, Ming |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085004466 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2464-3281 |
| authorships[2].author.display_name | Lavender Yao Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiang, Lavender Y. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5015581915 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xujin Chris Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Xujin C. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5013238957 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0946-3493 |
| authorships[4].author.display_name | Alexander T. M. Cheung |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheung, Alexander T. M. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5012090900 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Hannah Weiss |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Weiss, Hannah |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5077057828 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4074-7497 |
| authorships[6].author.display_name | David B. Kurland |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kurland, David |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5091175785 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1669-3211 |
| authorships[7].author.display_name | Kyunghyun Cho |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Cho, Kyunghyun |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5060570681 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1876-5963 |
| authorships[8].author.display_name | Eric K. Oermann |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Oermann, Eric K. |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.07047 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-25T00:00:00 |
| display_name | Language Model Classifier Aligns Better with Physician Word Sensitivity than XGBoost on Readmission Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9879999756813049 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W3113091479, https://openalex.org/W2162899405, https://openalex.org/W941090075, https://openalex.org/W2044987316, https://openalex.org/W4386566933, https://openalex.org/W2135277937, https://openalex.org/W3099922831, https://openalex.org/W4385571733, https://openalex.org/W4223433861, https://openalex.org/W4388419449 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.07047 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.07047 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.07047 |
| primary_location.id | pmh:oai:arXiv.org:2211.07047 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.07047 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.07047 |
| publication_date | 2022-11-13 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 60, 131 |
| abstract_inverted_index.We | 31, 54 |
| abstract_inverted_index.as | 10 |
| abstract_inverted_index.at | 41 |
| abstract_inverted_index.by | 138 |
| abstract_inverted_index.in | 5, 50, 65 |
| abstract_inverted_index.is | 147 |
| abstract_inverted_index.of | 62, 87, 95 |
| abstract_inverted_index.on | 59, 92, 116, 134, 149 |
| abstract_inverted_index.to | 18, 45 |
| abstract_inverted_index.Our | 81, 145 |
| abstract_inverted_index.The | 98 |
| abstract_inverted_index.and | 12, 89 |
| abstract_inverted_index.for | 3, 73 |
| abstract_inverted_index.set | 61, 68 |
| abstract_inverted_index.the | 15, 42, 56, 66, 84, 102, 110, 113 |
| abstract_inverted_index.two | 70 |
| abstract_inverted_index.area | 13 |
| abstract_inverted_index.code | 146 |
| abstract_inverted_index.fail | 17 |
| abstract_inverted_index.into | 48 |
| abstract_inverted_index.rank | 93 |
| abstract_inverted_index.some | 124 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.test | 67 |
| abstract_inverted_index.than | 112 |
| abstract_inverted_index.that | 37, 101, 121 |
| abstract_inverted_index.this | 128 |
| abstract_inverted_index.uses | 123 |
| abstract_inverted_index.with | 22, 77, 109, 142 |
| abstract_inverted_index.based | 91 |
| abstract_inverted_index.curve | 16 |
| abstract_inverted_index.level | 44 |
| abstract_inverted_index.logic | 86 |
| abstract_inverted_index.novel | 132 |
| abstract_inverted_index.score | 58, 106 |
| abstract_inverted_index.their | 27, 51, 140 |
| abstract_inverted_index.under | 14 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.which | 119 |
| abstract_inverted_index.words | 64 |
| abstract_inverted_index.GitHub | 150 |
| abstract_inverted_index.aligns | 107 |
| abstract_inverted_index.assess | 55 |
| abstract_inverted_index.better | 108 |
| abstract_inverted_index.logic. | 53 |
| abstract_inverted_index.metric | 36, 129 |
| abstract_inverted_index.models | 21 |
| abstract_inverted_index.offers | 130 |
| abstract_inverted_index.score, | 34 |
| abstract_inverted_index.tf-idf | 117 |
| abstract_inverted_index.between | 20 |
| abstract_inverted_index.compare | 83 |
| abstract_inverted_index.despite | 26 |
| abstract_inverted_index.metrics | 2 |
| abstract_inverted_index.model's | 104 |
| abstract_inverted_index.models' | 39, 136 |
| abstract_inverted_index.natural | 6 |
| abstract_inverted_index.provide | 46 |
| abstract_inverted_index.results | 99 |
| abstract_inverted_index.scores. | 97 |
| abstract_inverted_index.similar | 28, 78 |
| abstract_inverted_index.trained | 72 |
| abstract_inverted_index.xgboost | 114, 122 |
| abstract_inverted_index.Overall, | 127 |
| abstract_inverted_index.accuracy | 11 |
| abstract_inverted_index.hospital | 74 |
| abstract_inverted_index.indicate | 100 |
| abstract_inverted_index.insights | 47 |
| abstract_inverted_index.language | 7, 103 |
| abstract_inverted_index.metrics. | 30 |
| abstract_inverted_index.spurious | 125 |
| abstract_inverted_index.suggests | 120 |
| abstract_inverted_index.assessing | 135 |
| abstract_inverted_index.available | 148 |
| abstract_inverted_index.behaviors | 25, 40 |
| abstract_inverted_index.different | 23 |
| abstract_inverted_index.features. | 126 |
| abstract_inverted_index.introduce | 32 |
| abstract_inverted_index.opinions. | 144 |
| abstract_inverted_index.classifier | 115 |
| abstract_inverted_index.clinicians | 88 |
| abstract_inverted_index.evaluation | 1 |
| abstract_inverted_index.predictive | 24 |
| abstract_inverted_index.processing | 8 |
| abstract_inverted_index.robustness | 137 |
| abstract_inverted_index.vocabulary | 43 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.classifiers | 71, 90 |
| abstract_inverted_index.discrepancy | 141 |
| abstract_inverted_index.disparities | 49 |
| abstract_inverted_index.embeddings, | 118 |
| abstract_inverted_index.experiments | 82 |
| abstract_inverted_index.performance | 29, 79 |
| abstract_inverted_index.perspective | 133 |
| abstract_inverted_index.quantifying | 139 |
| abstract_inverted_index.readmission | 75 |
| abstract_inverted_index.scrutinizes | 38 |
| abstract_inverted_index.sensitivity | 33, 57, 96, 105 |
| abstract_inverted_index.statistics. | 80 |
| abstract_inverted_index.correlations | 94 |
| abstract_inverted_index.professional | 143 |
| abstract_inverted_index.differentiate | 19 |
| abstract_inverted_index.professionals | 111 |
| abstract_inverted_index.classification | 4, 76 |
| abstract_inverted_index.representative | 63 |
| abstract_inverted_index.decision-making | 52, 85 |
| abstract_inverted_index.(https://github.com/nyuolab/Model_Sensitivity). | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |