Language models for longitudinal analysis of abusive content in Billboard Music Charts Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.06266
There is no doubt that there has been a drastic increase in abusive and sexually explicit content in music, particularly in Billboard Music Charts. However, there is a lack of studies that validate the trend for effective policy development, as such content has harmful behavioural changes in children and youths. In this study, we utilise deep learning methods to analyse songs (lyrics) from Billboard Charts of the United States in the last seven decades. We provide a longitudinal study using deep learning and language models and review the evolution of content using sentiment analysis and abuse detection, including sexually explicit content. Our results show a significant rise in explicit content in popular music from 1990 onwards. Furthermore, we find an increasing prevalence of songs with lyrics containing profane, sexually explicit, and otherwise inappropriate language. The longitudinal analysis of the ability of language models to capture nuanced patterns in lyrical content, reflecting shifts in societal norms and language use over time.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2510.06266
- https://arxiv.org/pdf/2510.06266
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415097078
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415097078Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.06266Digital Object Identifier
- Title
-
Language models for longitudinal analysis of abusive content in Billboard Music ChartsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-06Full publication date if available
- Authors
-
Rohitash Chandra, Yathin Suresh, Divyansh Raj Sinha, Sanchit JindalList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.06266Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.06266Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.06266Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415097078 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.06266 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.06266 |
| ids.openalex | https://openalex.org/W4415097078 |
| fwci | |
| type | preprint |
| title | Language models for longitudinal analysis of abusive content in Billboard Music Charts |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12262 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9908999800682068 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Hate Speech and Cyberbullying Detection |
| topics[1].id | https://openalex.org/T13718 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9236000180244446 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Media Influence and Politics |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9039000272750854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2510.06266 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.06266 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.06266 |
| locations[1].id | doi:10.48550/arxiv.2510.06266 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.06266 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5043246042 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6353-1464 |
| authorships[0].author.display_name | Rohitash Chandra |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chandra, Rohitash |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5119963913 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yathin Suresh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suresh, Yathin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5119963914 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Divyansh Raj Sinha |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sinha, Divyansh Raj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119963915 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Sanchit Jindal |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jindal, Sanchit |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.06266 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-13T00:00:00 |
| display_name | Language models for longitudinal analysis of abusive content in Billboard Music Charts |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12262 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9908999800682068 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Hate Speech and Cyberbullying Detection |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.06266 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.06266 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.06266 |
| primary_location.id | pmh:oai:arXiv.org:2510.06266 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.06266 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.06266 |
| publication_date | 2025-10-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 27, 76, 104 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.We | 74 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.as | 39 |
| abstract_inverted_index.in | 11, 17, 20, 46, 69, 107, 110, 147, 152 |
| abstract_inverted_index.is | 1, 26 |
| abstract_inverted_index.no | 2 |
| abstract_inverted_index.of | 29, 65, 89, 122, 137, 140 |
| abstract_inverted_index.to | 58, 143 |
| abstract_inverted_index.we | 53, 117 |
| abstract_inverted_index.Our | 101 |
| abstract_inverted_index.The | 134 |
| abstract_inverted_index.and | 13, 48, 82, 85, 94, 130, 155 |
| abstract_inverted_index.for | 35 |
| abstract_inverted_index.has | 6, 42 |
| abstract_inverted_index.the | 33, 66, 70, 87, 138 |
| abstract_inverted_index.use | 157 |
| abstract_inverted_index.1990 | 114 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.deep | 55, 80 |
| abstract_inverted_index.find | 118 |
| abstract_inverted_index.from | 62, 113 |
| abstract_inverted_index.lack | 28 |
| abstract_inverted_index.last | 71 |
| abstract_inverted_index.over | 158 |
| abstract_inverted_index.rise | 106 |
| abstract_inverted_index.show | 103 |
| abstract_inverted_index.such | 40 |
| abstract_inverted_index.that | 4, 31 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.with | 124 |
| abstract_inverted_index.Music | 22 |
| abstract_inverted_index.There | 0 |
| abstract_inverted_index.abuse | 95 |
| abstract_inverted_index.doubt | 3 |
| abstract_inverted_index.music | 112 |
| abstract_inverted_index.norms | 154 |
| abstract_inverted_index.seven | 72 |
| abstract_inverted_index.songs | 60, 123 |
| abstract_inverted_index.study | 78 |
| abstract_inverted_index.there | 5, 25 |
| abstract_inverted_index.time. | 159 |
| abstract_inverted_index.trend | 34 |
| abstract_inverted_index.using | 79, 91 |
| abstract_inverted_index.Charts | 64 |
| abstract_inverted_index.States | 68 |
| abstract_inverted_index.United | 67 |
| abstract_inverted_index.lyrics | 125 |
| abstract_inverted_index.models | 84, 142 |
| abstract_inverted_index.music, | 18 |
| abstract_inverted_index.policy | 37 |
| abstract_inverted_index.review | 86 |
| abstract_inverted_index.shifts | 151 |
| abstract_inverted_index.study, | 52 |
| abstract_inverted_index.Charts. | 23 |
| abstract_inverted_index.ability | 139 |
| abstract_inverted_index.abusive | 12 |
| abstract_inverted_index.analyse | 59 |
| abstract_inverted_index.capture | 144 |
| abstract_inverted_index.changes | 45 |
| abstract_inverted_index.content | 16, 41, 90, 109 |
| abstract_inverted_index.drastic | 9 |
| abstract_inverted_index.harmful | 43 |
| abstract_inverted_index.lyrical | 148 |
| abstract_inverted_index.methods | 57 |
| abstract_inverted_index.nuanced | 145 |
| abstract_inverted_index.popular | 111 |
| abstract_inverted_index.provide | 75 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.studies | 30 |
| abstract_inverted_index.utilise | 54 |
| abstract_inverted_index.youths. | 49 |
| abstract_inverted_index.(lyrics) | 61 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.analysis | 93, 136 |
| abstract_inverted_index.children | 47 |
| abstract_inverted_index.content, | 149 |
| abstract_inverted_index.content. | 100 |
| abstract_inverted_index.decades. | 73 |
| abstract_inverted_index.explicit | 15, 99, 108 |
| abstract_inverted_index.increase | 10 |
| abstract_inverted_index.language | 83, 141, 156 |
| abstract_inverted_index.learning | 56, 81 |
| abstract_inverted_index.onwards. | 115 |
| abstract_inverted_index.patterns | 146 |
| abstract_inverted_index.profane, | 127 |
| abstract_inverted_index.sexually | 14, 98, 128 |
| abstract_inverted_index.societal | 153 |
| abstract_inverted_index.validate | 32 |
| abstract_inverted_index.Billboard | 21, 63 |
| abstract_inverted_index.effective | 36 |
| abstract_inverted_index.evolution | 88 |
| abstract_inverted_index.explicit, | 129 |
| abstract_inverted_index.including | 97 |
| abstract_inverted_index.language. | 133 |
| abstract_inverted_index.otherwise | 131 |
| abstract_inverted_index.sentiment | 92 |
| abstract_inverted_index.containing | 126 |
| abstract_inverted_index.detection, | 96 |
| abstract_inverted_index.increasing | 120 |
| abstract_inverted_index.prevalence | 121 |
| abstract_inverted_index.reflecting | 150 |
| abstract_inverted_index.behavioural | 44 |
| abstract_inverted_index.significant | 105 |
| abstract_inverted_index.Furthermore, | 116 |
| abstract_inverted_index.development, | 38 |
| abstract_inverted_index.longitudinal | 77, 135 |
| abstract_inverted_index.particularly | 19 |
| abstract_inverted_index.inappropriate | 132 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |