Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.16615
Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.16615
- https://arxiv.org/pdf/2412.16615
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405766520
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405766520Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.16615Digital Object Identifier
- Title
-
Large Language Model Can Be a Foundation for Hidden Rationale-Based RetrievalWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-21Full publication date if available
- Authors
-
Luo Ji, Fulai Guo, Teng Chen, Qing Gu, Xiaoyu Wang, Ningyuan Xi, Yihong Wang, Peng Yu, Yue Zhao, Hongyang Lei, Zhonglin Jiang, Yong ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.16615Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.16615Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.16615Direct OA link when available
- Concepts
-
Foundation (evidence), Computer science, Natural language processing, Artificial intelligence, Data science, History, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405766520 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.16615 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.16615 |
| ids.openalex | https://openalex.org/W4405766520 |
| fwci | |
| type | preprint |
| title | Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9053999781608582 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780966255 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8023055791854858 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5474306 |
| concepts[0].display_name | Foundation (evidence) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5959909558296204 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.41173624992370605 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3889584243297577 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3314747214317322 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C95457728 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15657949447631836 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[5].display_name | History |
| concepts[6].id | https://openalex.org/C166957645 |
| concepts[6].level | 1 |
| concepts[6].score | 0.08710736036300659 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[6].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/foundation |
| keywords[0].score | 0.8023055791854858 |
| keywords[0].display_name | Foundation (evidence) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5959909558296204 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.41173624992370605 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3889584243297577 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.3314747214317322 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/history |
| keywords[5].score | 0.15657949447631836 |
| keywords[5].display_name | History |
| keywords[6].id | https://openalex.org/keywords/archaeology |
| keywords[6].score | 0.08710736036300659 |
| keywords[6].display_name | Archaeology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.16615 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.16615 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.16615 |
| locations[1].id | doi:10.48550/arxiv.2412.16615 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.16615 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100842451 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Luo Ji |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ji, Luo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050912053 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1474-8899 |
| authorships[1].author.display_name | Fulai Guo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Guo, Feixiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100637767 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6428-7790 |
| authorships[2].author.display_name | Teng Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Teng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5066574703 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5948-4690 |
| authorships[3].author.display_name | Qing Gu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gu, Qingqing |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100357573 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9411-214X |
| authorships[4].author.display_name | Xiaoyu Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Xiaoyu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004687734 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ningyuan Xi |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xi, Ningyuan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5053640523 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8407-061X |
| authorships[6].author.display_name | Yihong Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wang, Yihong |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5020189974 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6310-514X |
| authorships[7].author.display_name | Peng Yu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yu, Peng |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5107951791 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Yue Zhao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhao, Yue |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5103246867 |
| authorships[9].author.orcid | https://orcid.org/0009-0001-9705-4595 |
| authorships[9].author.display_name | Hongyang Lei |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lei, Hongyang |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5104274609 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Zhonglin Jiang |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jiang, Zhonglin |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5035121805 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1691-9460 |
| authorships[11].author.display_name | Yong Chen |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Chen, Yong |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.16615 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9053999781608582 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2381393187, https://openalex.org/W2332779545, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2358060160, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.16615 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.16615 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.16615 |
| primary_location.id | pmh:oai:arXiv.org:2412.16615 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.16615 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.16615 |
| publication_date | 2024-12-21 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 35, 77, 82, 93, 102, 110, 169, 172 |
| abstract_inverted_index.In | 27 |
| abstract_inverted_index.To | 66, 85 |
| abstract_inverted_index.We | 135 |
| abstract_inverted_index.an | 70 |
| abstract_inverted_index.as | 168 |
| abstract_inverted_index.be | 56, 81, 116 |
| abstract_inverted_index.by | 58, 105, 140 |
| abstract_inverted_index.in | 4, 46 |
| abstract_inverted_index.is | 125 |
| abstract_inverted_index.no | 132 |
| abstract_inverted_index.of | 39, 175 |
| abstract_inverted_index.on | 150, 185 |
| abstract_inverted_index.or | 63 |
| abstract_inverted_index.to | 108, 165 |
| abstract_inverted_index.we | 30, 91 |
| abstract_inverted_index.LLM | 107, 167 |
| abstract_inverted_index.Our | 160, 178 |
| abstract_inverted_index.The | 113, 123 |
| abstract_inverted_index.and | 21, 33, 49, 142, 146, 181 |
| abstract_inverted_index.are | 12, 24, 51, 183 |
| abstract_inverted_index.but | 54 |
| abstract_inverted_index.can | 55, 115 |
| abstract_inverted_index.for | 15, 128, 171 |
| abstract_inverted_index.its | 144 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.the | 1, 98, 163 |
| abstract_inverted_index.also | 126 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.more | 36 |
| abstract_inverted_index.most | 9 |
| abstract_inverted_index.name | 136 |
| abstract_inverted_index.such | 68 |
| abstract_inverted_index.task | 100, 104 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.this | 28, 137 |
| abstract_inverted_index.type | 38 |
| abstract_inverted_index.with | 76, 118, 131, 156 |
| abstract_inverted_index.(LLM) | 75 |
| abstract_inverted_index.(RAG) | 7 |
| abstract_inverted_index.Large | 72 |
| abstract_inverted_index.could | 80 |
| abstract_inverted_index.logic | 61 |
| abstract_inverted_index.model | 74, 114 |
| abstract_inverted_index.often | 13 |
| abstract_inverted_index.query | 20, 48 |
| abstract_inverted_index.scope | 174 |
| abstract_inverted_index.study | 34, 161 |
| abstract_inverted_index.task, | 41 |
| abstract_inverted_index.which | 18, 47 |
| abstract_inverted_index.wider | 173 |
| abstract_inverted_index.(DPO). | 122 |
| abstract_inverted_index.(ESC), | 154 |
| abstract_inverted_index.RaHoRe | 141 |
| abstract_inverted_index.answer | 109 |
| abstract_inverted_index.called | 42 |
| abstract_inverted_index.codes, | 179 |
| abstract_inverted_index.design | 92 |
| abstract_inverted_index.direct | 119 |
| abstract_inverted_index.employ | 166 |
| abstract_inverted_index.hidden | 43 |
| abstract_inverted_index.paper, | 29 |
| abstract_inverted_index.recent | 2 |
| abstract_inverted_index.tasks. | 177 |
| abstract_inverted_index.verify | 143 |
| abstract_inverted_index.works. | 159 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.Support | 152 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.assumes | 19 |
| abstract_inverted_index.chains, | 60 |
| abstract_inverted_index.choice. | 84 |
| abstract_inverted_index.factual | 16 |
| abstract_inverted_index.further | 86 |
| abstract_inverted_index.instead | 31 |
| abstract_inverted_index.models, | 180 |
| abstract_inverted_index.propose | 32 |
| abstract_inverted_index.similar | 53 |
| abstract_inverted_index.special | 94 |
| abstract_inverted_index.compared | 155 |
| abstract_inverted_index.datasets | 182 |
| abstract_inverted_index.document | 50 |
| abstract_inverted_index.inferred | 57 |
| abstract_inverted_index.language | 73 |
| abstract_inverted_index.positive | 22 |
| abstract_inverted_index.previous | 157 |
| abstract_inverted_index.similar. | 26 |
| abstract_inverted_index.suggests | 162 |
| abstract_inverted_index.systems, | 8 |
| abstract_inverted_index.Emotional | 151 |
| abstract_inverted_index.LLM-based | 89 |
| abstract_inverted_index.available | 184 |
| abstract_inverted_index.developed | 14 |
| abstract_inverted_index.documents | 23 |
| abstract_inverted_index.empirical | 64 |
| abstract_inverted_index.framework | 124, 139 |
| abstract_inverted_index.optimized | 127 |
| abstract_inverted_index.potential | 164 |
| abstract_inverted_index.problems, | 69 |
| abstract_inverted_index.prompting | 106 |
| abstract_inverted_index.question. | 112 |
| abstract_inverted_index.rationale | 44 |
| abstract_inverted_index.reasoning | 59 |
| abstract_inverted_index.retrieval | 10, 40, 99, 138, 158, 176 |
| abstract_inverted_index.zero-shot | 145 |
| abstract_inverted_index.Generation | 6 |
| abstract_inverted_index.efficiency | 130 |
| abstract_inverted_index.fine-tuned | 117, 147 |
| abstract_inverted_index.foundation | 170 |
| abstract_inverted_index.generative | 103 |
| abstract_inverted_index.pioneering | 88 |
| abstract_inverted_index.preference | 120 |
| abstract_inverted_index.reasonable | 83 |
| abstract_inverted_index.retrieval, | 17, 45 |
| abstract_inverted_index.strengthen | 87 |
| abstract_inverted_index.transforms | 97 |
| abstract_inverted_index.advancement | 3 |
| abstract_inverted_index.challenging | 37 |
| abstract_inverted_index.instruction | 95 |
| abstract_inverted_index.performance | 133, 148 |
| abstract_inverted_index.retrievers, | 90 |
| abstract_inverted_index.superiority | 149 |
| abstract_inverted_index.Conversation | 153 |
| abstract_inverted_index.architecture | 79 |
| abstract_inverted_index.degradation. | 134 |
| abstract_inverted_index.experiences. | 65 |
| abstract_inverted_index.optimization | 121 |
| abstract_inverted_index.semantically | 25 |
| abstract_inverted_index.binary-choice | 111 |
| abstract_inverted_index.computational | 129 |
| abstract_inverted_index.cross-encoder | 78 |
| abstract_inverted_index.methodologies | 11 |
| abstract_inverted_index.relationships, | 62 |
| abstract_inverted_index.instruction-tuned | 71 |
| abstract_inverted_index.Retrieval-Augmented | 5 |
| abstract_inverted_index.https://github.com/flyfree5/LaHoRe. | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |