Large Language Model Federated Learning with Blockchain and Unlearning for Cross-Organizational Collaboration Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.13551
Large language models (LLMs) have transformed the way computers understand and process human language, but using them effectively across different organizations remains still difficult. When organizations work together to improve LLMs, they face several main challenges. First, organizations hesitate to share their valuable data with others. Second, competition between organizations creates trust problems during collaboration. Third, new privacy laws require organizations to be able to delete specific data when requested, which is especially difficult when multiple organizations are learning from shared data. Traditional federated learning approaches do not address these interconnected challenges, particularly in scenarios where participants cannot fully trust each other or the central aggregator. To overcome these limitations, we propose a hybrid blockchain-based federated learning framework that uniquely combines public and private blockchain architectures with multi-agent reinforcement learning. Our framework enables transparent sharing of model update through the public blockchain while protecting sensitive computations in private chains. Each organization operates as an intelligent agent, using Q-learning to optimize its participation strategy and resource allocation, thus aligning individual incentives with collective goals. Notably, we introduce an efficient unlearning mechanism based on Low-Rank Adaptation (LoRA) that enables selective removal of specific data contributions without compromising the model's overall performance. Through extensive experimentation on real-world datasets, we demonstrate that our framework effectively balances privacy protection, trust establishment, and regulatory compliance while maintaining high model performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.13551
- https://arxiv.org/pdf/2412.13551
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405626248
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405626248Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.13551Digital Object Identifier
- Title
-
Large Language Model Federated Learning with Blockchain and Unlearning for Cross-Organizational CollaborationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-18Full publication date if available
- Authors
-
Xuhan Zuo, Minghao Wang, Tianqing Zhu, Shui Yu, Wanlei ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.13551Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.13551Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.13551Direct OA link when available
- Concepts
-
Blockchain, Knowledge management, Organizational learning, Computer science, Business, Process management, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405626248 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.13551 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.13551 |
| ids.openalex | https://openalex.org/W4405626248 |
| fwci | |
| type | preprint |
| title | Large Language Model Federated Learning with Blockchain and Unlearning for Cross-Organizational Collaboration |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9434000253677368 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779687700 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9684208035469055 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q20514253 |
| concepts[0].display_name | Blockchain |
| concepts[1].id | https://openalex.org/C56739046 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5427991151809692 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[1].display_name | Knowledge management |
| concepts[2].id | https://openalex.org/C169735623 |
| concepts[2].level | 2 |
| concepts[2].score | 0.516941249370575 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1430172 |
| concepts[2].display_name | Organizational learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48062199354171753 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C144133560 |
| concepts[4].level | 0 |
| concepts[4].score | 0.362604558467865 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[4].display_name | Business |
| concepts[5].id | https://openalex.org/C195094911 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3209632635116577 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q14167904 |
| concepts[5].display_name | Process management |
| concepts[6].id | https://openalex.org/C38652104 |
| concepts[6].level | 1 |
| concepts[6].score | 0.15774521231651306 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[6].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/blockchain |
| keywords[0].score | 0.9684208035469055 |
| keywords[0].display_name | Blockchain |
| keywords[1].id | https://openalex.org/keywords/knowledge-management |
| keywords[1].score | 0.5427991151809692 |
| keywords[1].display_name | Knowledge management |
| keywords[2].id | https://openalex.org/keywords/organizational-learning |
| keywords[2].score | 0.516941249370575 |
| keywords[2].display_name | Organizational learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.48062199354171753 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/business |
| keywords[4].score | 0.362604558467865 |
| keywords[4].display_name | Business |
| keywords[5].id | https://openalex.org/keywords/process-management |
| keywords[5].score | 0.3209632635116577 |
| keywords[5].display_name | Process management |
| keywords[6].id | https://openalex.org/keywords/computer-security |
| keywords[6].score | 0.15774521231651306 |
| keywords[6].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.13551 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.13551 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.13551 |
| locations[1].id | doi:10.48550/arxiv.2412.13551 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.13551 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5059912021 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-8948-8343 |
| authorships[0].author.display_name | Xuhan Zuo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zuo, Xuhan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102763549 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8437-3821 |
| authorships[1].author.display_name | Minghao Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Minghao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5036801346 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3411-7947 |
| authorships[2].author.display_name | Tianqing Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhu, Tianqing |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005228053 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4485-6743 |
| authorships[3].author.display_name | Shui Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu, Shui |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051406984 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1680-2521 |
| authorships[4].author.display_name | Wanlei Zhou |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhou, Wanlei |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.13551 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large Language Model Federated Learning with Blockchain and Unlearning for Cross-Organizational Collaboration |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9434000253677368 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W1985378821, https://openalex.org/W2144661394, https://openalex.org/W2009248191, https://openalex.org/W2117340197, https://openalex.org/W3193141997, https://openalex.org/W2348241277, https://openalex.org/W2997491296, https://openalex.org/W2171700046, https://openalex.org/W2109088897, https://openalex.org/W2292220430 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.13551 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.13551 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.13551 |
| primary_location.id | pmh:oai:arXiv.org:2412.13551 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.13551 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.13551 |
| publication_date | 2024-12-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 112 |
| abstract_inverted_index.To | 106 |
| abstract_inverted_index.an | 153, 176 |
| abstract_inverted_index.as | 152 |
| abstract_inverted_index.be | 62 |
| abstract_inverted_index.do | 86 |
| abstract_inverted_index.in | 93, 146 |
| abstract_inverted_index.is | 71 |
| abstract_inverted_index.of | 135, 189 |
| abstract_inverted_index.on | 181, 202 |
| abstract_inverted_index.or | 102 |
| abstract_inverted_index.to | 28, 39, 61, 64, 158 |
| abstract_inverted_index.we | 110, 174, 205 |
| abstract_inverted_index.Our | 130 |
| abstract_inverted_index.and | 10, 122, 163, 216 |
| abstract_inverted_index.are | 77 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.its | 160 |
| abstract_inverted_index.new | 56 |
| abstract_inverted_index.not | 87 |
| abstract_inverted_index.our | 208 |
| abstract_inverted_index.the | 6, 103, 139, 195 |
| abstract_inverted_index.way | 7 |
| abstract_inverted_index.Each | 149 |
| abstract_inverted_index.When | 24 |
| abstract_inverted_index.able | 63 |
| abstract_inverted_index.data | 43, 67, 191 |
| abstract_inverted_index.each | 100 |
| abstract_inverted_index.face | 32 |
| abstract_inverted_index.from | 79 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 221 |
| abstract_inverted_index.laws | 58 |
| abstract_inverted_index.main | 34 |
| abstract_inverted_index.that | 118, 185, 207 |
| abstract_inverted_index.them | 16 |
| abstract_inverted_index.they | 31 |
| abstract_inverted_index.thus | 166 |
| abstract_inverted_index.when | 68, 74 |
| abstract_inverted_index.with | 44, 126, 170 |
| abstract_inverted_index.work | 26 |
| abstract_inverted_index.LLMs, | 30 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.based | 180 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.fully | 98 |
| abstract_inverted_index.human | 12 |
| abstract_inverted_index.model | 136, 222 |
| abstract_inverted_index.other | 101 |
| abstract_inverted_index.share | 40 |
| abstract_inverted_index.still | 22 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.these | 89, 108 |
| abstract_inverted_index.trust | 51, 99, 214 |
| abstract_inverted_index.using | 15, 156 |
| abstract_inverted_index.where | 95 |
| abstract_inverted_index.which | 70 |
| abstract_inverted_index.while | 142, 219 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.(LoRA) | 184 |
| abstract_inverted_index.First, | 36 |
| abstract_inverted_index.Third, | 55 |
| abstract_inverted_index.across | 18 |
| abstract_inverted_index.agent, | 155 |
| abstract_inverted_index.cannot | 97 |
| abstract_inverted_index.delete | 65 |
| abstract_inverted_index.during | 53 |
| abstract_inverted_index.goals. | 172 |
| abstract_inverted_index.hybrid | 113 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.public | 121, 140 |
| abstract_inverted_index.shared | 80 |
| abstract_inverted_index.update | 137 |
| abstract_inverted_index.Second, | 46 |
| abstract_inverted_index.Through | 199 |
| abstract_inverted_index.address | 88 |
| abstract_inverted_index.between | 48 |
| abstract_inverted_index.central | 104 |
| abstract_inverted_index.chains. | 148 |
| abstract_inverted_index.creates | 50 |
| abstract_inverted_index.enables | 132, 186 |
| abstract_inverted_index.improve | 29 |
| abstract_inverted_index.model's | 196 |
| abstract_inverted_index.others. | 45 |
| abstract_inverted_index.overall | 197 |
| abstract_inverted_index.privacy | 57, 212 |
| abstract_inverted_index.private | 123, 147 |
| abstract_inverted_index.process | 11 |
| abstract_inverted_index.propose | 111 |
| abstract_inverted_index.remains | 21 |
| abstract_inverted_index.removal | 188 |
| abstract_inverted_index.require | 59 |
| abstract_inverted_index.several | 33 |
| abstract_inverted_index.sharing | 134 |
| abstract_inverted_index.through | 138 |
| abstract_inverted_index.without | 193 |
| abstract_inverted_index.Low-Rank | 182 |
| abstract_inverted_index.Notably, | 173 |
| abstract_inverted_index.aligning | 167 |
| abstract_inverted_index.balances | 211 |
| abstract_inverted_index.combines | 120 |
| abstract_inverted_index.hesitate | 38 |
| abstract_inverted_index.language | 1 |
| abstract_inverted_index.learning | 78, 84, 116 |
| abstract_inverted_index.multiple | 75 |
| abstract_inverted_index.operates | 151 |
| abstract_inverted_index.optimize | 159 |
| abstract_inverted_index.overcome | 107 |
| abstract_inverted_index.problems | 52 |
| abstract_inverted_index.resource | 164 |
| abstract_inverted_index.specific | 66, 190 |
| abstract_inverted_index.strategy | 162 |
| abstract_inverted_index.together | 27 |
| abstract_inverted_index.uniquely | 119 |
| abstract_inverted_index.valuable | 42 |
| abstract_inverted_index.computers | 8 |
| abstract_inverted_index.datasets, | 204 |
| abstract_inverted_index.different | 19 |
| abstract_inverted_index.difficult | 73 |
| abstract_inverted_index.efficient | 177 |
| abstract_inverted_index.extensive | 200 |
| abstract_inverted_index.federated | 83, 115 |
| abstract_inverted_index.framework | 117, 131, 209 |
| abstract_inverted_index.introduce | 175 |
| abstract_inverted_index.language, | 13 |
| abstract_inverted_index.learning. | 129 |
| abstract_inverted_index.mechanism | 179 |
| abstract_inverted_index.scenarios | 94 |
| abstract_inverted_index.selective | 187 |
| abstract_inverted_index.sensitive | 144 |
| abstract_inverted_index.Adaptation | 183 |
| abstract_inverted_index.Q-learning | 157 |
| abstract_inverted_index.approaches | 85 |
| abstract_inverted_index.blockchain | 124, 141 |
| abstract_inverted_index.collective | 171 |
| abstract_inverted_index.compliance | 218 |
| abstract_inverted_index.difficult. | 23 |
| abstract_inverted_index.especially | 72 |
| abstract_inverted_index.incentives | 169 |
| abstract_inverted_index.individual | 168 |
| abstract_inverted_index.protecting | 143 |
| abstract_inverted_index.real-world | 203 |
| abstract_inverted_index.regulatory | 217 |
| abstract_inverted_index.requested, | 69 |
| abstract_inverted_index.understand | 9 |
| abstract_inverted_index.unlearning | 178 |
| abstract_inverted_index.Traditional | 82 |
| abstract_inverted_index.aggregator. | 105 |
| abstract_inverted_index.allocation, | 165 |
| abstract_inverted_index.challenges, | 91 |
| abstract_inverted_index.challenges. | 35 |
| abstract_inverted_index.competition | 47 |
| abstract_inverted_index.demonstrate | 206 |
| abstract_inverted_index.effectively | 17, 210 |
| abstract_inverted_index.intelligent | 154 |
| abstract_inverted_index.maintaining | 220 |
| abstract_inverted_index.multi-agent | 127 |
| abstract_inverted_index.protection, | 213 |
| abstract_inverted_index.transformed | 5 |
| abstract_inverted_index.transparent | 133 |
| abstract_inverted_index.compromising | 194 |
| abstract_inverted_index.computations | 145 |
| abstract_inverted_index.limitations, | 109 |
| abstract_inverted_index.organization | 150 |
| abstract_inverted_index.participants | 96 |
| abstract_inverted_index.particularly | 92 |
| abstract_inverted_index.performance. | 198, 223 |
| abstract_inverted_index.architectures | 125 |
| abstract_inverted_index.contributions | 192 |
| abstract_inverted_index.organizations | 20, 25, 37, 49, 60, 76 |
| abstract_inverted_index.participation | 161 |
| abstract_inverted_index.reinforcement | 128 |
| abstract_inverted_index.collaboration. | 54 |
| abstract_inverted_index.establishment, | 215 |
| abstract_inverted_index.interconnected | 90 |
| abstract_inverted_index.experimentation | 201 |
| abstract_inverted_index.blockchain-based | 114 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |