Large Language Model-Guided Semantic Alignment for Human Activity Recognition Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.00003
Human Activity Recognition (HAR) using Inertial Measurement Unit (IMU) sensors is critical for applications in healthcare, safety, and industrial production. However, variations in activity patterns, device types, and sensor placements create distribution gaps across datasets, reducing the performance of HAR models. To address this, we propose LanHAR, a novel system that leverages Large Language Models (LLMs) to generate semantic interpretations of sensor readings and activity labels for cross-dataset HAR. This approach not only mitigates cross-dataset heterogeneity but also enhances the recognition of new activities. LanHAR employs an iterative re-generation method to produce high-quality semantic interpretations with LLMs and a two-stage training framework that bridges the semantic interpretations of sensor readings and activity labels. This ultimately leads to a lightweight sensor encoder suitable for mobile deployment, enabling any sensor reading to be mapped into the semantic interpretation space. Experiments on five public datasets demonstrate that our approach significantly outperforms state-of-the-art methods in both cross-dataset HAR and new activity recognition. The source code is publicly available at https://github.com/DASHLab/LanHAR.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.00003
- https://arxiv.org/pdf/2410.00003
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403853690
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403853690Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.00003Digital Object Identifier
- Title
-
Large Language Model-Guided Semantic Alignment for Human Activity RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-12Full publication date if available
- Authors
-
Yan Hua, Hongdong Tan, Yi Ding, Peng-Fei Zhou, Vinod Namboodiri, Yang YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.00003Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.00003Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.00003Direct OA link when available
- Concepts
-
Computer science, Natural language processing, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403853690 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.00003 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.00003 |
| ids.openalex | https://openalex.org/W4403853690 |
| fwci | |
| type | preprint |
| title | Large Language Model-Guided Semantic Alignment for Human Activity Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10812 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8633999824523926 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Human Pose and Action Recognition |
| topics[1].id | https://openalex.org/T10444 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.7660999894142151 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Context-Aware Activity Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.4804070293903351 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.37645792961120605 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| concepts[2].id | https://openalex.org/C41895202 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3362271785736084 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[2].display_name | Linguistics |
| concepts[3].id | https://openalex.org/C138885662 |
| concepts[3].level | 0 |
| concepts[3].score | 0.0834871232509613 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[3].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.4804070293903351 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.37645792961120605 |
| keywords[1].display_name | Natural language processing |
| keywords[2].id | https://openalex.org/keywords/linguistics |
| keywords[2].score | 0.3362271785736084 |
| keywords[2].display_name | Linguistics |
| keywords[3].id | https://openalex.org/keywords/philosophy |
| keywords[3].score | 0.0834871232509613 |
| keywords[3].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.00003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.00003 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.00003 |
| locations[1].id | doi:10.48550/arxiv.2410.00003 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.00003 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042638627 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8316-3937 |
| authorships[0].author.display_name | Yan Hua |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan, Hua |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5082469381 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9706-2539 |
| authorships[1].author.display_name | Hongdong Tan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tan, Heng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101846047 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4442-3393 |
| authorships[2].author.display_name | Yi Ding |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ding, Yi |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101569330 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Peng-Fei Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Pengfei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5114439623 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Vinod Namboodiri |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Namboodiri, Vinod |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5056178220 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7339-9126 |
| authorships[5].author.display_name | Yang Yu |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yang, Yu |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.00003 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-29T00:00:00 |
| display_name | Large Language Model-Guided Semantic Alignment for Human Activity Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10812 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8633999824523926 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Human Pose and Action Recognition |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.00003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.00003 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.00003 |
| primary_location.id | pmh:oai:arXiv.org:2410.00003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.00003 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.00003 |
| publication_date | 2024-09-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 98, 117 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.at | 164 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.in | 14, 22, 150 |
| abstract_inverted_index.is | 10, 161 |
| abstract_inverted_index.of | 38, 60, 81, 107 |
| abstract_inverted_index.on | 138 |
| abstract_inverted_index.to | 56, 90, 116, 129 |
| abstract_inverted_index.we | 44 |
| abstract_inverted_index.HAR | 39, 153 |
| abstract_inverted_index.The | 158 |
| abstract_inverted_index.and | 17, 27, 63, 97, 110, 154 |
| abstract_inverted_index.any | 126 |
| abstract_inverted_index.but | 76 |
| abstract_inverted_index.for | 12, 66, 122 |
| abstract_inverted_index.new | 82, 155 |
| abstract_inverted_index.not | 71 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 36, 79, 104, 133 |
| abstract_inverted_index.HAR. | 68 |
| abstract_inverted_index.LLMs | 96 |
| abstract_inverted_index.This | 69, 113 |
| abstract_inverted_index.Unit | 7 |
| abstract_inverted_index.also | 77 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.code | 160 |
| abstract_inverted_index.five | 139 |
| abstract_inverted_index.gaps | 32 |
| abstract_inverted_index.into | 132 |
| abstract_inverted_index.only | 72 |
| abstract_inverted_index.that | 50, 102, 143 |
| abstract_inverted_index.with | 95 |
| abstract_inverted_index.(HAR) | 3 |
| abstract_inverted_index.(IMU) | 8 |
| abstract_inverted_index.Human | 0 |
| abstract_inverted_index.Large | 52 |
| abstract_inverted_index.leads | 115 |
| abstract_inverted_index.novel | 48 |
| abstract_inverted_index.this, | 43 |
| abstract_inverted_index.using | 4 |
| abstract_inverted_index.(LLMs) | 55 |
| abstract_inverted_index.LanHAR | 84 |
| abstract_inverted_index.Models | 54 |
| abstract_inverted_index.across | 33 |
| abstract_inverted_index.create | 30 |
| abstract_inverted_index.device | 25 |
| abstract_inverted_index.labels | 65 |
| abstract_inverted_index.mapped | 131 |
| abstract_inverted_index.method | 89 |
| abstract_inverted_index.mobile | 123 |
| abstract_inverted_index.public | 140 |
| abstract_inverted_index.sensor | 28, 61, 108, 119, 127 |
| abstract_inverted_index.source | 159 |
| abstract_inverted_index.space. | 136 |
| abstract_inverted_index.system | 49 |
| abstract_inverted_index.types, | 26 |
| abstract_inverted_index.LanHAR, | 46 |
| abstract_inverted_index.address | 42 |
| abstract_inverted_index.bridges | 103 |
| abstract_inverted_index.employs | 85 |
| abstract_inverted_index.encoder | 120 |
| abstract_inverted_index.labels. | 112 |
| abstract_inverted_index.methods | 149 |
| abstract_inverted_index.models. | 40 |
| abstract_inverted_index.produce | 91 |
| abstract_inverted_index.propose | 45 |
| abstract_inverted_index.reading | 128 |
| abstract_inverted_index.safety, | 16 |
| abstract_inverted_index.sensors | 9 |
| abstract_inverted_index.Activity | 1 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Inertial | 5 |
| abstract_inverted_index.Language | 53 |
| abstract_inverted_index.activity | 23, 64, 111, 156 |
| abstract_inverted_index.approach | 70, 145 |
| abstract_inverted_index.critical | 11 |
| abstract_inverted_index.datasets | 141 |
| abstract_inverted_index.enabling | 125 |
| abstract_inverted_index.enhances | 78 |
| abstract_inverted_index.generate | 57 |
| abstract_inverted_index.publicly | 162 |
| abstract_inverted_index.readings | 62, 109 |
| abstract_inverted_index.reducing | 35 |
| abstract_inverted_index.semantic | 58, 93, 105, 134 |
| abstract_inverted_index.suitable | 121 |
| abstract_inverted_index.training | 100 |
| abstract_inverted_index.available | 163 |
| abstract_inverted_index.datasets, | 34 |
| abstract_inverted_index.framework | 101 |
| abstract_inverted_index.iterative | 87 |
| abstract_inverted_index.leverages | 51 |
| abstract_inverted_index.mitigates | 73 |
| abstract_inverted_index.patterns, | 24 |
| abstract_inverted_index.two-stage | 99 |
| abstract_inverted_index.industrial | 18 |
| abstract_inverted_index.placements | 29 |
| abstract_inverted_index.ultimately | 114 |
| abstract_inverted_index.variations | 21 |
| abstract_inverted_index.Experiments | 137 |
| abstract_inverted_index.Measurement | 6 |
| abstract_inverted_index.Recognition | 2 |
| abstract_inverted_index.activities. | 83 |
| abstract_inverted_index.demonstrate | 142 |
| abstract_inverted_index.deployment, | 124 |
| abstract_inverted_index.healthcare, | 15 |
| abstract_inverted_index.lightweight | 118 |
| abstract_inverted_index.outperforms | 147 |
| abstract_inverted_index.performance | 37 |
| abstract_inverted_index.production. | 19 |
| abstract_inverted_index.recognition | 80 |
| abstract_inverted_index.applications | 13 |
| abstract_inverted_index.distribution | 31 |
| abstract_inverted_index.high-quality | 92 |
| abstract_inverted_index.recognition. | 157 |
| abstract_inverted_index.cross-dataset | 67, 74, 152 |
| abstract_inverted_index.heterogeneity | 75 |
| abstract_inverted_index.re-generation | 88 |
| abstract_inverted_index.significantly | 146 |
| abstract_inverted_index.interpretation | 135 |
| abstract_inverted_index.interpretations | 59, 94, 106 |
| abstract_inverted_index.state-of-the-art | 148 |
| abstract_inverted_index.https://github.com/DASHLab/LanHAR. | 165 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |