Large Language Models for Detecting Bias in Job Descriptions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.17454/ijcol102.05
This study explores the application of large language (LLM) models for detecting implicit bias in job descriptions, an important concern in human resources that shapes applicant pools and influences employer perception. We compare different LLM architectures—encoder, encoder-decoder, and decoder models—focusing on seven specific bias types. The research questions address the capability of foundation LLMs to detect implicit bias and the effectiveness of domain adaptation via fine-tuning versus prompt-tuning. Results indicate that fine-tuned models are more effective in detecting biases, with Flan-T5-XL emerging as the top performer, surpassing the zero-shot prompting of GPT-4o model. A labelled dataset consisting of verified gold-standard, silver-standard, and unverified bronze-standard data was created for this purpose and open-sourced1 to advance the field and serve as a valuable resource for future research.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17454/ijcol102.05
- http://journals.openedition.org/ijcol/pdf/1454
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411068020
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411068020Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17454/ijcol102.05Digital Object Identifier
- Title
-
Large Language Models for Detecting Bias in Job DescriptionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Tristan Everitt, Paul Ryan, Brian M. Davis, Kolawole John AdebayoList of authors in order
- Landing page
-
https://doi.org/10.17454/ijcol102.05Publisher landing page
- PDF URL
-
https://journals.openedition.org/ijcol/pdf/1454Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://journals.openedition.org/ijcol/pdf/1454Direct OA link when available
- Concepts
-
Computer science, Natural language processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411068020 |
|---|---|
| doi | https://doi.org/10.17454/ijcol102.05 |
| ids.doi | https://doi.org/10.17454/ijcol102.05 |
| ids.openalex | https://openalex.org/W4411068020 |
| fwci | 0.0 |
| type | article |
| title | Large Language Models for Detecting Bias in Job Descriptions |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 79 |
| biblio.first_page | 79 |
| topics[0].id | https://openalex.org/T10809 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9584000110626221 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3614 |
| topics[0].subfield.display_name | Radiological and Ultrasound Technology |
| topics[0].display_name | Occupational Health and Safety Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.539740264415741 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.36411622166633606 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.539740264415741 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.36411622166633606 |
| keywords[1].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.17454/ijcol102.05 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219754 |
| locations[0].source.issn | 2499-4553 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2499-4553 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Italian Journal of Computational Linguistics |
| locations[0].source.host_organization | https://openalex.org/P4310311504 |
| locations[0].source.host_organization_name | UMR ESPACE et UMR LISST |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311504 |
| locations[0].source.host_organization_lineage_names | UMR ESPACE et UMR LISST |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | http://journals.openedition.org/ijcol/pdf/1454 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Italian Journal of Computational Linguistics |
| locations[0].landing_page_url | https://doi.org/10.17454/ijcol102.05 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5117844721 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Tristan Everitt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tristan Everitt |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054860855 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0770-2737 |
| authorships[1].author.display_name | Paul Ryan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paul Ryan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5078209252 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4646-0569 |
| authorships[2].author.display_name | Brian M. Davis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brian Davis |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5017923726 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7126-7026 |
| authorships[3].author.display_name | Kolawole John Adebayo |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Kolawole J. Adebayo |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://journals.openedition.org/ijcol/pdf/1454 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large Language Models for Detecting Bias in Job Descriptions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10809 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9584000110626221 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3614 |
| primary_topic.subfield.display_name | Radiological and Ultrasound Technology |
| primary_topic.display_name | Occupational Health and Safety Research |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17454/ijcol102.05 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219754 |
| best_oa_location.source.issn | 2499-4553 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2499-4553 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Italian Journal of Computational Linguistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311504 |
| best_oa_location.source.host_organization_name | UMR ESPACE et UMR LISST |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311504 |
| best_oa_location.source.host_organization_lineage_names | UMR ESPACE et UMR LISST |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | http://journals.openedition.org/ijcol/pdf/1454 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Italian Journal of Computational Linguistics |
| best_oa_location.landing_page_url | https://doi.org/10.17454/ijcol102.05 |
| primary_location.id | doi:10.17454/ijcol102.05 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219754 |
| primary_location.source.issn | 2499-4553 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2499-4553 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Italian Journal of Computational Linguistics |
| primary_location.source.host_organization | https://openalex.org/P4310311504 |
| primary_location.source.host_organization_name | UMR ESPACE et UMR LISST |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311504 |
| primary_location.source.host_organization_lineage_names | UMR ESPACE et UMR LISST |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | http://journals.openedition.org/ijcol/pdf/1454 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Italian Journal of Computational Linguistics |
| primary_location.landing_page_url | https://doi.org/10.17454/ijcol102.05 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 93 |
| abstract_inverted_index.a | 119 |
| abstract_inverted_index.We | 31 |
| abstract_inverted_index.an | 17 |
| abstract_inverted_index.as | 82, 118 |
| abstract_inverted_index.in | 14, 20, 76 |
| abstract_inverted_index.of | 5, 51, 61, 90, 97 |
| abstract_inverted_index.on | 40 |
| abstract_inverted_index.to | 54, 112 |
| abstract_inverted_index.LLM | 34 |
| abstract_inverted_index.The | 45 |
| abstract_inverted_index.and | 27, 37, 58, 101, 110, 116 |
| abstract_inverted_index.are | 73 |
| abstract_inverted_index.for | 10, 107, 122 |
| abstract_inverted_index.job | 15 |
| abstract_inverted_index.the | 3, 49, 59, 83, 87, 114 |
| abstract_inverted_index.top | 84 |
| abstract_inverted_index.via | 64 |
| abstract_inverted_index.was | 105 |
| abstract_inverted_index.LLMs | 53 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.bias | 13, 43, 57 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.more | 74 |
| abstract_inverted_index.that | 23, 70 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.(LLM) | 8 |
| abstract_inverted_index.field | 115 |
| abstract_inverted_index.human | 21 |
| abstract_inverted_index.large | 6 |
| abstract_inverted_index.pools | 26 |
| abstract_inverted_index.serve | 117 |
| abstract_inverted_index.seven | 41 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.GPT-4o | 91 |
| abstract_inverted_index.detect | 55 |
| abstract_inverted_index.domain | 62 |
| abstract_inverted_index.future | 123 |
| abstract_inverted_index.model. | 92 |
| abstract_inverted_index.models | 9, 72 |
| abstract_inverted_index.shapes | 24 |
| abstract_inverted_index.types. | 44 |
| abstract_inverted_index.versus | 66 |
| abstract_inverted_index.Results | 68 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.advance | 113 |
| abstract_inverted_index.biases, | 78 |
| abstract_inverted_index.compare | 32 |
| abstract_inverted_index.concern | 19 |
| abstract_inverted_index.created | 106 |
| abstract_inverted_index.dataset | 95 |
| abstract_inverted_index.decoder | 38 |
| abstract_inverted_index.purpose | 109 |
| abstract_inverted_index.emerging | 81 |
| abstract_inverted_index.employer | 29 |
| abstract_inverted_index.explores | 2 |
| abstract_inverted_index.implicit | 12, 56 |
| abstract_inverted_index.indicate | 69 |
| abstract_inverted_index.labelled | 94 |
| abstract_inverted_index.language | 7 |
| abstract_inverted_index.research | 46 |
| abstract_inverted_index.resource | 121 |
| abstract_inverted_index.specific | 42 |
| abstract_inverted_index.valuable | 120 |
| abstract_inverted_index.verified | 98 |
| abstract_inverted_index.applicant | 25 |
| abstract_inverted_index.detecting | 11, 77 |
| abstract_inverted_index.different | 33 |
| abstract_inverted_index.effective | 75 |
| abstract_inverted_index.important | 18 |
| abstract_inverted_index.prompting | 89 |
| abstract_inverted_index.questions | 47 |
| abstract_inverted_index.research. | 124 |
| abstract_inverted_index.resources | 22 |
| abstract_inverted_index.zero-shot | 88 |
| abstract_inverted_index.Flan-T5-XL | 80 |
| abstract_inverted_index.adaptation | 63 |
| abstract_inverted_index.capability | 50 |
| abstract_inverted_index.consisting | 96 |
| abstract_inverted_index.fine-tuned | 71 |
| abstract_inverted_index.foundation | 52 |
| abstract_inverted_index.influences | 28 |
| abstract_inverted_index.performer, | 85 |
| abstract_inverted_index.surpassing | 86 |
| abstract_inverted_index.unverified | 102 |
| abstract_inverted_index.application | 4 |
| abstract_inverted_index.fine-tuning | 65 |
| abstract_inverted_index.perception. | 30 |
| abstract_inverted_index.descriptions, | 16 |
| abstract_inverted_index.effectiveness | 60 |
| abstract_inverted_index.open-sourced1 | 111 |
| abstract_inverted_index.gold-standard, | 99 |
| abstract_inverted_index.prompt-tuning. | 67 |
| abstract_inverted_index.bronze-standard | 103 |
| abstract_inverted_index.encoder-decoder, | 36 |
| abstract_inverted_index.silver-standard, | 100 |
| abstract_inverted_index.models—focusing | 39 |
| abstract_inverted_index.architectures—encoder, | 35 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.4796521 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |