Large-scale behaviour of Sobolev functions in Ahlfors regular metric measure spaces Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2310.11718
In this paper, we study the behaviour at infinity of $p$-Sobolev functions in the setting of Ahlfors $Q$-regular metric measure spaces supporting a $p$-Poincaré inequality. By introducing the notions of sets which are $p$-thin at infinity, we show that functions in the homogeneous space $\dot N^{1,p}(X)$ necessarily have limits at infinity outside of $p$-thin sets, when $1\le pQ$, we show by example that uniqueness of limits at infinity may fail for functions in $\dot N^{1,p}(X)$. While functions in $\dot N^{1,p}(X)$ may not have any reasonable limit at infinity when $p=Q$, we introduce the notion of a $Q$-thick set at infinity, and characterize the limits of functions in $\dot N^{1,Q}(X)$ along infinite curves in terms of limits outside $Q$-thin sets and along $Q$-thick sets. By weakening the notion of a thick set, we show that a function in $\dot N^{1,Q}(X)$ with a limit along such an almost thick set may fail to have a limit along any infinite curve. While homogeneous $p$-Sobolev functions may have infinite limits at infinity when $p\ge Q$, we provide bounds on how quickly such functions may grow: when $p=Q$, functions in $\dot N^{1,p}(X)$ have sub-logarithmic growth at infinity, whereas when $p>Q$, such functions have growth at infinity controlled by $d(\cdot, O)^{1-Q/p}$, where $O$ is a fixed base point in $X$. For the inhomogeneous spaces $N^{1,p}(X)$, the phenomenon is different. We show that for $1\le p\le Q$, the limit of a function $u\in N^{1,p}(X)$ is zero outside of a $p$-thin set, whereas $\lim_{x\to+\infty}u(x)=0$ for all $u\in N^{1,p}(X)$ when $p>Q$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2310.11718
- https://arxiv.org/pdf/2310.11718
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387839267
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387839267Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2310.11718Digital Object Identifier
- Title
-
Large-scale behaviour of Sobolev functions in Ahlfors regular metric measure spacesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-18Full publication date if available
- Authors
-
Josh Kline, Pekka Koskela, Khanh NguyenList of authors in order
- Landing page
-
https://arxiv.org/abs/2310.11718Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2310.11718Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2310.11718Direct OA link when available
- Concepts
-
Infinity, Sobolev space, Uniqueness, Mathematics, Limit (mathematics), Measure (data warehouse), Homogeneous, Metric space, Pure mathematics, Function (biology), Mathematical analysis, Combinatorics, Biology, Computer science, Evolutionary biology, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387839267 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2310.11718 |
| ids.doi | https://doi.org/10.48550/arxiv.2310.11718 |
| ids.openalex | https://openalex.org/W4387839267 |
| fwci | |
| type | preprint |
| title | Large-scale behaviour of Sobolev functions in Ahlfors regular metric measure spaces |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10194 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9948999881744385 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Nonlinear Partial Differential Equations |
| topics[1].id | https://openalex.org/T11049 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Advanced Harmonic Analysis Research |
| topics[2].id | https://openalex.org/T12100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9664000272750854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Advanced Mathematical Modeling in Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7321624 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8008341193199158 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q205 |
| concepts[0].display_name | Infinity |
| concepts[1].id | https://openalex.org/C99730327 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7296817302703857 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1501536 |
| concepts[1].display_name | Sobolev space |
| concepts[2].id | https://openalex.org/C2777021972 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7074342966079712 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q22976830 |
| concepts[2].display_name | Uniqueness |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6775085926055908 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C151201525 |
| concepts[4].level | 2 |
| concepts[4].score | 0.610198974609375 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[4].display_name | Limit (mathematics) |
| concepts[5].id | https://openalex.org/C2780009758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4946841895580292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[5].display_name | Measure (data warehouse) |
| concepts[6].id | https://openalex.org/C66882249 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48190954327583313 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q169336 |
| concepts[6].display_name | Homogeneous |
| concepts[7].id | https://openalex.org/C198043062 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44901323318481445 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180953 |
| concepts[7].display_name | Metric space |
| concepts[8].id | https://openalex.org/C202444582 |
| concepts[8].level | 1 |
| concepts[8].score | 0.41564705967903137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[8].display_name | Pure mathematics |
| concepts[9].id | https://openalex.org/C14036430 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41478079557418823 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[9].display_name | Function (biology) |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.41346582770347595 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C114614502 |
| concepts[11].level | 1 |
| concepts[11].score | 0.40095070004463196 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[11].display_name | Combinatorics |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C78458016 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[14].display_name | Evolutionary biology |
| concepts[15].id | https://openalex.org/C77088390 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[15].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/infinity |
| keywords[0].score | 0.8008341193199158 |
| keywords[0].display_name | Infinity |
| keywords[1].id | https://openalex.org/keywords/sobolev-space |
| keywords[1].score | 0.7296817302703857 |
| keywords[1].display_name | Sobolev space |
| keywords[2].id | https://openalex.org/keywords/uniqueness |
| keywords[2].score | 0.7074342966079712 |
| keywords[2].display_name | Uniqueness |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.6775085926055908 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/limit |
| keywords[4].score | 0.610198974609375 |
| keywords[4].display_name | Limit (mathematics) |
| keywords[5].id | https://openalex.org/keywords/measure |
| keywords[5].score | 0.4946841895580292 |
| keywords[5].display_name | Measure (data warehouse) |
| keywords[6].id | https://openalex.org/keywords/homogeneous |
| keywords[6].score | 0.48190954327583313 |
| keywords[6].display_name | Homogeneous |
| keywords[7].id | https://openalex.org/keywords/metric-space |
| keywords[7].score | 0.44901323318481445 |
| keywords[7].display_name | Metric space |
| keywords[8].id | https://openalex.org/keywords/pure-mathematics |
| keywords[8].score | 0.41564705967903137 |
| keywords[8].display_name | Pure mathematics |
| keywords[9].id | https://openalex.org/keywords/function |
| keywords[9].score | 0.41478079557418823 |
| keywords[9].display_name | Function (biology) |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.41346582770347595 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/combinatorics |
| keywords[11].score | 0.40095070004463196 |
| keywords[11].display_name | Combinatorics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2310.11718 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2310.11718 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2310.11718 |
| locations[1].id | doi:10.48550/arxiv.2310.11718 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2310.11718 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5055337429 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Josh Kline |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kline, Josh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018489148 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6253-1013 |
| authorships[1].author.display_name | Pekka Koskela |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Koskela, Pekka |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013166244 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0400-1070 |
| authorships[2].author.display_name | Khanh Nguyen |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nguyen, Khanh |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2310.11718 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large-scale behaviour of Sobolev functions in Ahlfors regular metric measure spaces |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10194 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9948999881744385 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Nonlinear Partial Differential Equations |
| related_works | https://openalex.org/W571281153, https://openalex.org/W2949403936, https://openalex.org/W4301247218, https://openalex.org/W3023806604, https://openalex.org/W2952139525, https://openalex.org/W2129818458, https://openalex.org/W4289551052, https://openalex.org/W2046787445, https://openalex.org/W3100294205, https://openalex.org/W2548892457 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2310.11718 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2310.11718 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2310.11718 |
| primary_location.id | pmh:oai:arXiv.org:2310.11718 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2310.11718 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2310.11718 |
| publication_date | 2023-10-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 95, 128, 134, 140, 152, 208, 233, 241 |
| abstract_inverted_index.By | 25, 123 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 223 |
| abstract_inverted_index.an | 144 |
| abstract_inverted_index.at | 7, 34, 49, 66, 86, 98, 166, 190, 199 |
| abstract_inverted_index.by | 60, 202 |
| abstract_inverted_index.in | 12, 40, 72, 77, 106, 112, 136, 184, 212 |
| abstract_inverted_index.is | 207, 221, 237 |
| abstract_inverted_index.of | 9, 15, 29, 52, 64, 94, 104, 114, 127, 232, 240 |
| abstract_inverted_index.on | 174 |
| abstract_inverted_index.to | 150 |
| abstract_inverted_index.we | 3, 36, 58, 90, 131, 171 |
| abstract_inverted_index.$O$ | 206 |
| abstract_inverted_index.For | 214 |
| abstract_inverted_index.Q$, | 170, 229 |
| abstract_inverted_index.all | 247 |
| abstract_inverted_index.and | 100, 119 |
| abstract_inverted_index.any | 83, 155 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.for | 70, 226, 246 |
| abstract_inverted_index.how | 175 |
| abstract_inverted_index.may | 68, 80, 148, 162, 179 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.set | 97, 147 |
| abstract_inverted_index.the | 5, 13, 27, 41, 92, 102, 125, 215, 219, 230 |
| abstract_inverted_index.$X$. | 213 |
| abstract_inverted_index.base | 210 |
| abstract_inverted_index.fail | 69, 149 |
| abstract_inverted_index.have | 47, 82, 151, 163, 187, 197 |
| abstract_inverted_index.pQ$, | 57 |
| abstract_inverted_index.p\le | 228 |
| abstract_inverted_index.set, | 130, 243 |
| abstract_inverted_index.sets | 30, 118 |
| abstract_inverted_index.show | 37, 59, 132, 224 |
| abstract_inverted_index.such | 143, 177, 195 |
| abstract_inverted_index.that | 38, 62, 133, 225 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.when | 55, 88, 168, 181, 193, 250 |
| abstract_inverted_index.with | 139 |
| abstract_inverted_index.zero | 238 |
| abstract_inverted_index.$1\le | 56, 227 |
| abstract_inverted_index.$\dot | 44, 73, 78, 107, 137, 185 |
| abstract_inverted_index.$p\ge | 169 |
| abstract_inverted_index.$u\in | 235, 248 |
| abstract_inverted_index.While | 75, 158 |
| abstract_inverted_index.along | 109, 120, 142, 154 |
| abstract_inverted_index.fixed | 209 |
| abstract_inverted_index.grow: | 180 |
| abstract_inverted_index.limit | 85, 141, 153, 231 |
| abstract_inverted_index.point | 211 |
| abstract_inverted_index.sets, | 54 |
| abstract_inverted_index.sets. | 122 |
| abstract_inverted_index.space | 43 |
| abstract_inverted_index.study | 4 |
| abstract_inverted_index.terms | 113 |
| abstract_inverted_index.thick | 129, 146 |
| abstract_inverted_index.where | 205 |
| abstract_inverted_index.which | 31 |
| abstract_inverted_index.$p=Q$, | 89, 182 |
| abstract_inverted_index.almost | 145 |
| abstract_inverted_index.bounds | 173 |
| abstract_inverted_index.curve. | 157 |
| abstract_inverted_index.curves | 111 |
| abstract_inverted_index.growth | 189, 198 |
| abstract_inverted_index.limits | 48, 65, 103, 115, 165 |
| abstract_inverted_index.metric | 18 |
| abstract_inverted_index.notion | 93, 126 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.spaces | 20, 217 |
| abstract_inverted_index.Ahlfors | 16 |
| abstract_inverted_index.example | 61 |
| abstract_inverted_index.measure | 19 |
| abstract_inverted_index.notions | 28 |
| abstract_inverted_index.outside | 51, 116, 239 |
| abstract_inverted_index.provide | 172 |
| abstract_inverted_index.quickly | 176 |
| abstract_inverted_index.setting | 14 |
| abstract_inverted_index.whereas | 192, 244 |
| abstract_inverted_index.$Q$-thin | 117 |
| abstract_inverted_index.$p$-thin | 33, 53, 242 |
| abstract_inverted_index.function | 135, 234 |
| abstract_inverted_index.infinite | 110, 156, 164 |
| abstract_inverted_index.infinity | 8, 50, 67, 87, 167, 200 |
| abstract_inverted_index.$Q$-thick | 96, 121 |
| abstract_inverted_index.$d(\cdot, | 203 |
| abstract_inverted_index.$p>Q$, | 194 |
| abstract_inverted_index.$p>Q$. | 251 |
| abstract_inverted_index.behaviour | 6 |
| abstract_inverted_index.functions | 11, 39, 71, 76, 105, 161, 178, 183, 196 |
| abstract_inverted_index.infinity, | 35, 99, 191 |
| abstract_inverted_index.introduce | 91 |
| abstract_inverted_index.weakening | 124 |
| abstract_inverted_index.controlled | 201 |
| abstract_inverted_index.different. | 222 |
| abstract_inverted_index.phenomenon | 220 |
| abstract_inverted_index.reasonable | 84 |
| abstract_inverted_index.supporting | 21 |
| abstract_inverted_index.uniqueness | 63 |
| abstract_inverted_index.$Q$-regular | 17 |
| abstract_inverted_index.$p$-Sobolev | 10, 160 |
| abstract_inverted_index.N^{1,Q}(X)$ | 108, 138 |
| abstract_inverted_index.N^{1,p}(X)$ | 45, 79, 186, 236, 249 |
| abstract_inverted_index.homogeneous | 42, 159 |
| abstract_inverted_index.inequality. | 24 |
| abstract_inverted_index.introducing | 26 |
| abstract_inverted_index.necessarily | 46 |
| abstract_inverted_index.N^{1,p}(X)$. | 74 |
| abstract_inverted_index.O)^{1-Q/p}$, | 204 |
| abstract_inverted_index.characterize | 101 |
| abstract_inverted_index.$N^{1,p}(X)$, | 218 |
| abstract_inverted_index.$p$-Poincaré | 23 |
| abstract_inverted_index.inhomogeneous | 216 |
| abstract_inverted_index.sub-logarithmic | 188 |
| abstract_inverted_index.$\lim_{x\to+\infty}u(x)=0$ | 245 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |