Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant - Datasets, Trained Models, BNN Samples, and MCMC Chains Article Swipe
Ji Won Park
,
Sebastian Wagner-Carena
,
Simon Birrer
,
Philip J. Marshall
,
Joshua Yao-Yu Lin
,
A. Roodman
·
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.4300381
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.4300381
We publish the training/validation/test datasets, trained model weights, configuration files, Bayesian neural network samples, and MCMC chains used to produce the figures in the LSST DESC paper, "Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant." They are formatted to be used with the DESC package "H0rton" (https://github.com/jiwoncpark/h0rton). Additional descriptions can be found in the README. Please contact Ji Won Park (@jiwoncpark) on GitHub or make an issue for any questions.
Related Topics
Concepts
Markov chain Monte Carlo
Inference
Bayesian inference
Bayesian probability
Scale (ratio)
Computer science
Artificial intelligence
Artificial neural network
Hubble's law
Constant (computer programming)
Pattern recognition (psychology)
Astrophysics
Physics
Galaxy
Redshift
Programming language
Quantum mechanics
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.4300381
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394033435
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394033435Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.4300381Digital Object Identifier
- Title
-
Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant - Datasets, Trained Models, BNN Samples, and MCMC ChainsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-12-01Full publication date if available
- Authors
-
Ji Won Park, Sebastian Wagner-Carena, Simon Birrer, Philip J. Marshall, Joshua Yao-Yu Lin, A. RoodmanList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.4300381Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.4300381Direct OA link when available
- Concepts
-
Markov chain Monte Carlo, Inference, Bayesian inference, Bayesian probability, Scale (ratio), Computer science, Artificial intelligence, Artificial neural network, Hubble's law, Constant (computer programming), Pattern recognition (psychology), Astrophysics, Physics, Galaxy, Redshift, Programming language, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394033435 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.4300381 |
| ids.doi | https://doi.org/10.5281/zenodo.4300381 |
| ids.openalex | https://openalex.org/W4394033435 |
| fwci | |
| type | dataset |
| title | Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant - Datasets, Trained Models, BNN Samples, and MCMC Chains |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13487 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9397000074386597 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Statistical and numerical algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C111350023 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7149745225906372 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[0].display_name | Markov chain Monte Carlo |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6684910655021667 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C160234255 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5353617668151855 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[2].display_name | Bayesian inference |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5224389433860779 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C2778755073 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5030822157859802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[4].display_name | Scale (ratio) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48180192708969116 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4749853014945984 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46864742040634155 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C103874350 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4297710359096527 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q179916 |
| concepts[8].display_name | Hubble's law |
| concepts[9].id | https://openalex.org/C2777027219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4125937223434448 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1284190 |
| concepts[9].display_name | Constant (computer programming) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.40940481424331665 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C44870925 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2132609784603119 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[11].display_name | Astrophysics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19746306538581848 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C98444146 |
| concepts[13].level | 2 |
| concepts[13].score | 0.19340789318084717 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q318 |
| concepts[13].display_name | Galaxy |
| concepts[14].id | https://openalex.org/C33024259 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76250 |
| concepts[14].display_name | Redshift |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C62520636 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[16].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[0].score | 0.7149745225906372 |
| keywords[0].display_name | Markov chain Monte Carlo |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6684910655021667 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/bayesian-inference |
| keywords[2].score | 0.5353617668151855 |
| keywords[2].display_name | Bayesian inference |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5224389433860779 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/scale |
| keywords[4].score | 0.5030822157859802 |
| keywords[4].display_name | Scale (ratio) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.48180192708969116 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4749853014945984 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.46864742040634155 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/hubbles-law |
| keywords[8].score | 0.4297710359096527 |
| keywords[8].display_name | Hubble's law |
| keywords[9].id | https://openalex.org/keywords/constant |
| keywords[9].score | 0.4125937223434448 |
| keywords[9].display_name | Constant (computer programming) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.40940481424331665 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/astrophysics |
| keywords[11].score | 0.2132609784603119 |
| keywords[11].display_name | Astrophysics |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.19746306538581848 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/galaxy |
| keywords[13].score | 0.19340789318084717 |
| keywords[13].display_name | Galaxy |
| language | en |
| locations[0].id | doi:10.5281/zenodo.4300381 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.4300381 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5100339674 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0692-1092 |
| authorships[0].author.display_name | Ji Won Park |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[0].affiliations[0].raw_affiliation_string | Stanford University / SLAC |
| authorships[0].institutions[0].id | https://openalex.org/I97018004 |
| authorships[0].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Stanford University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ji Won Park |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Stanford University / SLAC |
| authorships[1].author.id | https://openalex.org/A5000635779 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5039-1685 |
| authorships[1].author.display_name | Sebastian Wagner-Carena |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | Stanford University / SLAC |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sebastian Wagner-Carena |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Stanford University / SLAC |
| authorships[2].author.id | https://openalex.org/A5002183314 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3195-5507 |
| authorships[2].author.display_name | Simon Birrer |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[2].affiliations[0].raw_affiliation_string | Stanford University |
| authorships[2].institutions[0].id | https://openalex.org/I97018004 |
| authorships[2].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Stanford University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Simon Birrer |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Stanford University |
| authorships[3].author.id | https://openalex.org/A5062066120 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0113-5770 |
| authorships[3].author.display_name | Philip J. Marshall |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[3].affiliations[0].raw_affiliation_string | Stanford University / SLAC |
| authorships[3].institutions[0].id | https://openalex.org/I97018004 |
| authorships[3].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Stanford University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Philip J. Marshall |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Stanford University / SLAC |
| authorships[4].author.id | https://openalex.org/A5043039867 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0680-4838 |
| authorships[4].author.display_name | Joshua Yao-Yu Lin |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Illinois at Urbana-Champaign |
| authorships[4].institutions[0].id | https://openalex.org/I157725225 |
| authorships[4].institutions[0].ror | https://ror.org/047426m28 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Joshua Yao-Yu Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Illinois at Urbana-Champaign |
| authorships[5].author.id | https://openalex.org/A5001496087 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5326-3486 |
| authorships[5].author.display_name | A. Roodman |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Stanford University / SLAC |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Aaron Roodman |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Stanford University / SLAC |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.4300381 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large-Scale Gravitational Lens Modeling with Bayesian Neural Networks for Accurate and Precise Inference of the Hubble Constant - Datasets, Trained Models, BNN Samples, and MCMC Chains |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13487 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9397000074386597 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Statistical and numerical algorithms |
| related_works | https://openalex.org/W3087071515, https://openalex.org/W4283077537, https://openalex.org/W2999603699, https://openalex.org/W2902858271, https://openalex.org/W2464065341, https://openalex.org/W2947536360, https://openalex.org/W3086697448, https://openalex.org/W1987558550, https://openalex.org/W2968689489, https://openalex.org/W2372267530 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.4300381 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.4300381 |
| primary_location.id | doi:10.5281/zenodo.4300381 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.4300381 |
| publication_date | 2020-12-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.Ji | 66 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.an | 74 |
| abstract_inverted_index.be | 48, 59 |
| abstract_inverted_index.in | 22, 61 |
| abstract_inverted_index.of | 40 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.or | 72 |
| abstract_inverted_index.to | 18, 47 |
| abstract_inverted_index.Won | 67 |
| abstract_inverted_index.and | 14, 37 |
| abstract_inverted_index.any | 77 |
| abstract_inverted_index.are | 45 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 35, 76 |
| abstract_inverted_index.the | 2, 20, 23, 41, 51, 62 |
| abstract_inverted_index.DESC | 25, 52 |
| abstract_inverted_index.LSST | 24 |
| abstract_inverted_index.Lens | 29 |
| abstract_inverted_index.MCMC | 15 |
| abstract_inverted_index.Park | 68 |
| abstract_inverted_index.They | 44 |
| abstract_inverted_index.make | 73 |
| abstract_inverted_index.used | 17, 49 |
| abstract_inverted_index.with | 31, 50 |
| abstract_inverted_index.found | 60 |
| abstract_inverted_index.issue | 75 |
| abstract_inverted_index.model | 6 |
| abstract_inverted_index.GitHub | 71 |
| abstract_inverted_index.Hubble | 42 |
| abstract_inverted_index.Neural | 33 |
| abstract_inverted_index.Please | 64 |
| abstract_inverted_index.chains | 16 |
| abstract_inverted_index.files, | 9 |
| abstract_inverted_index.neural | 11 |
| abstract_inverted_index.paper, | 26 |
| abstract_inverted_index.Precise | 38 |
| abstract_inverted_index.README. | 63 |
| abstract_inverted_index.contact | 65 |
| abstract_inverted_index.figures | 21 |
| abstract_inverted_index.network | 12 |
| abstract_inverted_index.package | 53 |
| abstract_inverted_index.produce | 19 |
| abstract_inverted_index.publish | 1 |
| abstract_inverted_index.trained | 5 |
| abstract_inverted_index."H0rton" | 54 |
| abstract_inverted_index.Accurate | 36 |
| abstract_inverted_index.Bayesian | 10, 32 |
| abstract_inverted_index.Modeling | 30 |
| abstract_inverted_index.Networks | 34 |
| abstract_inverted_index.samples, | 13 |
| abstract_inverted_index.weights, | 7 |
| abstract_inverted_index.Inference | 39 |
| abstract_inverted_index.datasets, | 4 |
| abstract_inverted_index.formatted | 46 |
| abstract_inverted_index.Additional | 56 |
| abstract_inverted_index.Constant." | 43 |
| abstract_inverted_index.questions. | 78 |
| abstract_inverted_index."Large-Scale | 27 |
| abstract_inverted_index.descriptions | 57 |
| abstract_inverted_index.(@jiwoncpark) | 69 |
| abstract_inverted_index.Gravitational | 28 |
| abstract_inverted_index.configuration | 8 |
| abstract_inverted_index.training/validation/test | 3 |
| abstract_inverted_index.(https://github.com/jiwoncpark/h0rton). | 55 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |