Large-Scale Monitoring for Cyber Attacks by Using Cluster Information on Darknet Traffic Features Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2015.07.292
This paper presents a machine learning approach to large-scale monitoring for malicious activities on Internet. In the proposed system, network packets sent from a subnet to a darknet (i.e., a set of unused IPs) are collected, and they are transformed into 27-dimensional TAP (Traffic Analysis Profile) feature vectors. Then, a hierarchical clustering is performed to obtain clusters for typical malicious behaviors. In the monitoring phase, the malicious activities in a subnet are estimated from the closest TAP feature cluster. Then, such TAP feature clusters for all subnets are visualized on the proposed monitoring system in real time. In the experiment, we use a big data set of 303,733,994 darknet packs collected from February 1st to February 28th, 2014 (28 days) for monitoring. As a result, we can successfully detect an indication of the pandemic of a new malware, which attacked to the vulnerability of Synology NAS (port 5,000/TCP).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2015.07.292
- OA Status
- diamond
- Cited By
- 11
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1465790424
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1465790424Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2015.07.292Digital Object Identifier
- Title
-
Large-Scale Monitoring for Cyber Attacks by Using Cluster Information on Darknet Traffic FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Hironori Nishikaze, Seiichi Ozawa, Jun Kitazono, Tao Ban, Junji Nakazato, Jumpei ShimamuraList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2015.07.292Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2015.07.292Direct OA link when available
- Concepts
-
Computer science, Subnet, Network packet, Cluster analysis, The Internet, Malware, Scale (ratio), Data mining, Computer network, Vulnerability (computing), Feature (linguistics), Computer security, Real-time computing, Artificial intelligence, World Wide Web, Linguistics, Philosophy, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 5, 2021: 3, 2020: 2, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1465790424 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2015.07.292 |
| ids.doi | https://doi.org/10.1016/j.procs.2015.07.292 |
| ids.mag | 1465790424 |
| ids.openalex | https://openalex.org/W1465790424 |
| fwci | 0.0 |
| type | article |
| title | Large-Scale Monitoring for Cyber Attacks by Using Cluster Information on Darknet Traffic Features |
| awards[0].id | https://openalex.org/G8253589719 |
| awards[0].funder_id | https://openalex.org/F4320323573 |
| awards[0].display_name | |
| awards[0].funder_award_id | 24500173 |
| awards[0].funder_display_name | Ministry of Education and Science |
| biblio.issue | |
| biblio.volume | 53 |
| biblio.last_page | 182 |
| biblio.first_page | 175 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| funders[0].id | https://openalex.org/F4320323573 |
| funders[0].ror | https://ror.org/053pcb396 |
| funders[0].display_name | Ministry of Education and Science |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8785280585289001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C21099817 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8313601613044739 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7631721 |
| concepts[1].display_name | Subnet |
| concepts[2].id | https://openalex.org/C158379750 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6374701261520386 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q214111 |
| concepts[2].display_name | Network packet |
| concepts[3].id | https://openalex.org/C73555534 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5580210089683533 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[3].display_name | Cluster analysis |
| concepts[4].id | https://openalex.org/C110875604 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5097317099571228 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[4].display_name | The Internet |
| concepts[5].id | https://openalex.org/C541664917 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49143922328948975 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[5].display_name | Malware |
| concepts[6].id | https://openalex.org/C2778755073 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4872347414493561 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[6].display_name | Scale (ratio) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4388096332550049 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C31258907 |
| concepts[8].level | 1 |
| concepts[8].score | 0.43529990315437317 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[8].display_name | Computer network |
| concepts[9].id | https://openalex.org/C95713431 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42220890522003174 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q631425 |
| concepts[9].display_name | Vulnerability (computing) |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41884827613830566 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C38652104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37618550658226013 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[11].display_name | Computer security |
| concepts[12].id | https://openalex.org/C79403827 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3658546507358551 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[12].display_name | Real-time computing |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18156230449676514 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C136764020 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1434335708618164 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[14].display_name | World Wide Web |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8785280585289001 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/subnet |
| keywords[1].score | 0.8313601613044739 |
| keywords[1].display_name | Subnet |
| keywords[2].id | https://openalex.org/keywords/network-packet |
| keywords[2].score | 0.6374701261520386 |
| keywords[2].display_name | Network packet |
| keywords[3].id | https://openalex.org/keywords/cluster-analysis |
| keywords[3].score | 0.5580210089683533 |
| keywords[3].display_name | Cluster analysis |
| keywords[4].id | https://openalex.org/keywords/the-internet |
| keywords[4].score | 0.5097317099571228 |
| keywords[4].display_name | The Internet |
| keywords[5].id | https://openalex.org/keywords/malware |
| keywords[5].score | 0.49143922328948975 |
| keywords[5].display_name | Malware |
| keywords[6].id | https://openalex.org/keywords/scale |
| keywords[6].score | 0.4872347414493561 |
| keywords[6].display_name | Scale (ratio) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4388096332550049 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/computer-network |
| keywords[8].score | 0.43529990315437317 |
| keywords[8].display_name | Computer network |
| keywords[9].id | https://openalex.org/keywords/vulnerability |
| keywords[9].score | 0.42220890522003174 |
| keywords[9].display_name | Vulnerability (computing) |
| keywords[10].id | https://openalex.org/keywords/feature |
| keywords[10].score | 0.41884827613830566 |
| keywords[10].display_name | Feature (linguistics) |
| keywords[11].id | https://openalex.org/keywords/computer-security |
| keywords[11].score | 0.37618550658226013 |
| keywords[11].display_name | Computer security |
| keywords[12].id | https://openalex.org/keywords/real-time-computing |
| keywords[12].score | 0.3658546507358551 |
| keywords[12].display_name | Real-time computing |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.18156230449676514 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/world-wide-web |
| keywords[14].score | 0.1434335708618164 |
| keywords[14].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2015.07.292 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2015.07.292 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027748976 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Hironori Nishikaze |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[0].affiliations[0].raw_affiliation_string | [Kobe University, Kobe, JAPAN] |
| authorships[0].institutions[0].id | https://openalex.org/I65837984 |
| authorships[0].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Kobe University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hironori Nishikaze |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Kobe University, Kobe, JAPAN] |
| authorships[1].author.id | https://openalex.org/A5048669520 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0965-0064 |
| authorships[1].author.display_name | Seiichi Ozawa |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[1].affiliations[0].raw_affiliation_string | [Kobe University, Kobe, JAPAN] |
| authorships[1].institutions[0].id | https://openalex.org/I65837984 |
| authorships[1].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Kobe University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Seiichi Ozawa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | [Kobe University, Kobe, JAPAN] |
| authorships[2].author.id | https://openalex.org/A5038747148 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6701-3947 |
| authorships[2].author.display_name | Jun Kitazono |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I65837984 |
| authorships[2].affiliations[0].raw_affiliation_string | [Kobe University, Kobe, JAPAN] |
| authorships[2].institutions[0].id | https://openalex.org/I65837984 |
| authorships[2].institutions[0].ror | https://ror.org/03tgsfw79 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I65837984 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Kobe University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jun Kitazono |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | [Kobe University, Kobe, JAPAN] |
| authorships[3].author.id | https://openalex.org/A5014860606 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9616-3212 |
| authorships[3].author.display_name | Tao Ban |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I90023481 |
| authorships[3].affiliations[0].raw_affiliation_string | National Institute of Information and Communications technology Koganei Tokyo Japan |
| authorships[3].institutions[0].id | https://openalex.org/I90023481 |
| authorships[3].institutions[0].ror | https://ror.org/016bgq349 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I90023481 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | National Institute of Information and Communications Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tao Ban |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Institute of Information and Communications technology Koganei Tokyo Japan |
| authorships[4].author.id | https://openalex.org/A5017300671 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Junji Nakazato |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I90023481 |
| authorships[4].affiliations[0].raw_affiliation_string | National Institute of Information and Communications technology Koganei Tokyo Japan |
| authorships[4].institutions[0].id | https://openalex.org/I90023481 |
| authorships[4].institutions[0].ror | https://ror.org/016bgq349 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I90023481 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | National Institute of Information and Communications Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Junji Nakazato |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | National Institute of Information and Communications technology Koganei Tokyo Japan |
| authorships[5].author.id | https://openalex.org/A5054530080 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jumpei Shimamura |
| authorships[5].affiliations[0].raw_affiliation_string | clwit, Inc., Mitaka, Tokyo, Japan |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jumpei Shimamura |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | clwit, Inc., Mitaka, Tokyo, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2015.07.292 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large-Scale Monitoring for Cyber Attacks by Using Cluster Information on Darknet Traffic Features |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2102539527, https://openalex.org/W2131631951, https://openalex.org/W2356206668, https://openalex.org/W2130707537, https://openalex.org/W3200778902, https://openalex.org/W1977409556, https://openalex.org/W2361602549, https://openalex.org/W4362683600, https://openalex.org/W2105155969, https://openalex.org/W170421214 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.procs.2015.07.292 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.292 |
| primary_location.id | doi:10.1016/j.procs.2015.07.292 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2015.07.292 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2005043824, https://openalex.org/W2146872105, https://openalex.org/W69685990, https://openalex.org/W1902027874, https://openalex.org/W60341924, https://openalex.org/W2612166593, https://openalex.org/W2059745395, https://openalex.org/W2276275567, https://openalex.org/W2285593809 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 3, 23, 26, 29, 49, 69, 102, 123, 135 |
| abstract_inverted_index.As | 122 |
| abstract_inverted_index.In | 15, 61, 97 |
| abstract_inverted_index.an | 129 |
| abstract_inverted_index.in | 68, 94 |
| abstract_inverted_index.is | 52 |
| abstract_inverted_index.of | 31, 106, 131, 134, 143 |
| abstract_inverted_index.on | 13, 89 |
| abstract_inverted_index.to | 7, 25, 54, 114, 140 |
| abstract_inverted_index.we | 100, 125 |
| abstract_inverted_index.(28 | 118 |
| abstract_inverted_index.1st | 113 |
| abstract_inverted_index.NAS | 145 |
| abstract_inverted_index.TAP | 42, 76, 81 |
| abstract_inverted_index.all | 85 |
| abstract_inverted_index.and | 36 |
| abstract_inverted_index.are | 34, 38, 71, 87 |
| abstract_inverted_index.big | 103 |
| abstract_inverted_index.can | 126 |
| abstract_inverted_index.for | 10, 57, 84, 120 |
| abstract_inverted_index.new | 136 |
| abstract_inverted_index.set | 30, 105 |
| abstract_inverted_index.the | 16, 62, 65, 74, 90, 98, 132, 141 |
| abstract_inverted_index.use | 101 |
| abstract_inverted_index.2014 | 117 |
| abstract_inverted_index.IPs) | 33 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.from | 22, 73, 111 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.real | 95 |
| abstract_inverted_index.sent | 21 |
| abstract_inverted_index.such | 80 |
| abstract_inverted_index.they | 37 |
| abstract_inverted_index.(port | 146 |
| abstract_inverted_index.28th, | 116 |
| abstract_inverted_index.Then, | 48, 79 |
| abstract_inverted_index.days) | 119 |
| abstract_inverted_index.packs | 109 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.time. | 96 |
| abstract_inverted_index.which | 138 |
| abstract_inverted_index.(i.e., | 28 |
| abstract_inverted_index.detect | 128 |
| abstract_inverted_index.obtain | 55 |
| abstract_inverted_index.phase, | 64 |
| abstract_inverted_index.subnet | 24, 70 |
| abstract_inverted_index.system | 93 |
| abstract_inverted_index.unused | 32 |
| abstract_inverted_index.closest | 75 |
| abstract_inverted_index.darknet | 27, 108 |
| abstract_inverted_index.feature | 46, 77, 82 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.network | 19 |
| abstract_inverted_index.packets | 20 |
| abstract_inverted_index.result, | 124 |
| abstract_inverted_index.subnets | 86 |
| abstract_inverted_index.system, | 18 |
| abstract_inverted_index.typical | 58 |
| abstract_inverted_index.(Traffic | 43 |
| abstract_inverted_index.Analysis | 44 |
| abstract_inverted_index.February | 112, 115 |
| abstract_inverted_index.Profile) | 45 |
| abstract_inverted_index.Synology | 144 |
| abstract_inverted_index.approach | 6 |
| abstract_inverted_index.attacked | 139 |
| abstract_inverted_index.cluster. | 78 |
| abstract_inverted_index.clusters | 56, 83 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.malware, | 137 |
| abstract_inverted_index.pandemic | 133 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 17, 91 |
| abstract_inverted_index.vectors. | 47 |
| abstract_inverted_index.Internet. | 14 |
| abstract_inverted_index.collected | 110 |
| abstract_inverted_index.estimated | 72 |
| abstract_inverted_index.malicious | 11, 59, 66 |
| abstract_inverted_index.performed | 53 |
| abstract_inverted_index.activities | 12, 67 |
| abstract_inverted_index.behaviors. | 60 |
| abstract_inverted_index.clustering | 51 |
| abstract_inverted_index.collected, | 35 |
| abstract_inverted_index.indication | 130 |
| abstract_inverted_index.monitoring | 9, 63, 92 |
| abstract_inverted_index.visualized | 88 |
| abstract_inverted_index.303,733,994 | 107 |
| abstract_inverted_index.5,000/TCP). | 147 |
| abstract_inverted_index.experiment, | 99 |
| abstract_inverted_index.large-scale | 8 |
| abstract_inverted_index.monitoring. | 121 |
| abstract_inverted_index.transformed | 39 |
| abstract_inverted_index.hierarchical | 50 |
| abstract_inverted_index.successfully | 127 |
| abstract_inverted_index.vulnerability | 142 |
| abstract_inverted_index.27-dimensional | 41 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.02027845 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |