Large-scale multi-center CT and MRI segmentation of pancreas with deep learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.media.2024.103382
Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022. We also collected CT scans of 1,350 patients from publicly available sources for benchmarking purposes. We introduced a new pancreas segmentation method, called PanSegNet, combining the strengths of nnUNet and a Transformer network with a new linear attention module enabling volumetric computation. We tested PanSegNet's accuracy in cross-modality (a total of 2,117 scans) and cross-center settings with Dice and Hausdorff distance (HD95) evaluation metrics. We used Cohen's kappa statistics for intra and inter-rater agreement evaluation and paired t-tests for volume and Dice comparisons, respectively. For segmentation accuracy, we achieved Dice coefficients of 88.3% (±7.2%, at case level) with CT, 85.0% (±7.9%) with T1 W MRI, and 86.3% (±6.4%) with T2 W MRI. There was a high correlation for pancreas volume prediction with R2 of 0.91, 0.84, and 0.85 for CT, T1 W, and T2 W, respectively. We found moderate inter-observer (0.624 and 0.638 for T1 W and T2 W MRI, respectively) and high intra-observer agreement scores. All MRI data is made available at https://osf.io/kysnj/. Our source code is available at https://github.com/NUBagciLab/PaNSegNet.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.media.2024.103382
- OA Status
- hybrid
- Cited By
- 33
- References
- 67
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404171396
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404171396Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.media.2024.103382Digital Object Identifier
- Title
-
Large-scale multi-center CT and MRI segmentation of pancreas with deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-08Full publication date if available
- Authors
-
Zheyuan Zhang, Elif Keleş, Görkem Durak, Yavuz Taktak, Onkar Susladkar, Vandan Gorade, Debesh Jha, Asli C. Ormeci, Alpay Medetalibeyoğlu, Lanhong Yao, Bin Wang, Ilkin Isler, Linkai Peng, Hongyi Pan, Camila Lopes Vendrami, Amir Bourhani, Yury Velichko, Boqing Gong, Concetto Spampinato, Ayis Pyrros, Pallavi Tiwari, Derk C.F. Klatte, Megan Engels, Sanne Hoogenboom, Candice W. Bolan, Emil Agarunov, Nassier Harfouch, Chenchan Huang, Marco J. Bruno, Ivo G. Schoots, Rajesh N. Keswani, Frank H. Miller, Tamas A. Gonda, Cemal Yazıcı, Temel Tirkes, Barış Türkbey, Michael B. Wallace, Ulaş BağcıList of authors in order
- Landing page
-
https://doi.org/10.1016/j.media.2024.103382Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.media.2024.103382Direct OA link when available
- Concepts
-
Artificial intelligence, Deep learning, Segmentation, Scale (ratio), Computer vision, Center (category theory), Computer science, Pattern recognition (psychology), Radiology, Medicine, Cartography, Geography, Crystallography, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
33Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 30, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
67Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404171396 |
|---|---|
| doi | https://doi.org/10.1016/j.media.2024.103382 |
| ids.doi | https://doi.org/10.1016/j.media.2024.103382 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39541706 |
| ids.openalex | https://openalex.org/W4404171396 |
| fwci | 17.49519946 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D008279 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Magnetic Resonance Imaging |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012189 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Retrospective Studies |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D014057 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Tomography, X-Ray Computed |
| mesh[5].qualifier_ui | Q000000981 |
| mesh[5].descriptor_ui | D010179 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | diagnostic imaging |
| mesh[5].descriptor_name | Pancreas |
| mesh[6].qualifier_ui | Q000000981 |
| mesh[6].descriptor_ui | D010182 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | diagnostic imaging |
| mesh[6].descriptor_name | Pancreatic Diseases |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D066264 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Datasets as Topic |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000077321 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Deep Learning |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D008279 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Magnetic Resonance Imaging |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012189 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Retrospective Studies |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D014057 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Tomography, X-Ray Computed |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D010179 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Pancreas |
| mesh[14].qualifier_ui | Q000000981 |
| mesh[14].descriptor_ui | D010182 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | diagnostic imaging |
| mesh[14].descriptor_name | Pancreatic Diseases |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D066264 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Datasets as Topic |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000077321 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Deep Learning |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D008279 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Magnetic Resonance Imaging |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D012189 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Retrospective Studies |
| mesh[20].qualifier_ui | Q000379 |
| mesh[20].descriptor_ui | D014057 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | methods |
| mesh[20].descriptor_name | Tomography, X-Ray Computed |
| mesh[21].qualifier_ui | Q000000981 |
| mesh[21].descriptor_ui | D010179 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | diagnostic imaging |
| mesh[21].descriptor_name | Pancreas |
| mesh[22].qualifier_ui | Q000000981 |
| mesh[22].descriptor_ui | D010182 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | diagnostic imaging |
| mesh[22].descriptor_name | Pancreatic Diseases |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D066264 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Datasets as Topic |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000077321 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Deep Learning |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D008279 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Magnetic Resonance Imaging |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D012189 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Retrospective Studies |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D014057 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Tomography, X-Ray Computed |
| mesh[29].qualifier_ui | Q000000981 |
| mesh[29].descriptor_ui | D010179 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | diagnostic imaging |
| mesh[29].descriptor_name | Pancreas |
| mesh[30].qualifier_ui | Q000000981 |
| mesh[30].descriptor_ui | D010182 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | diagnostic imaging |
| mesh[30].descriptor_name | Pancreatic Diseases |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D066264 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Datasets as Topic |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D006801 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Humans |
| mesh[33].qualifier_ui | |
| mesh[33].descriptor_ui | D000077321 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | |
| mesh[33].descriptor_name | Deep Learning |
| mesh[34].qualifier_ui | Q000379 |
| mesh[34].descriptor_ui | D008279 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | methods |
| mesh[34].descriptor_name | Magnetic Resonance Imaging |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D012189 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Retrospective Studies |
| mesh[36].qualifier_ui | Q000379 |
| mesh[36].descriptor_ui | D014057 |
| mesh[36].is_major_topic | True |
| mesh[36].qualifier_name | methods |
| mesh[36].descriptor_name | Tomography, X-Ray Computed |
| mesh[37].qualifier_ui | Q000000981 |
| mesh[37].descriptor_ui | D010179 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | diagnostic imaging |
| mesh[37].descriptor_name | Pancreas |
| mesh[38].qualifier_ui | Q000000981 |
| mesh[38].descriptor_ui | D010182 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | diagnostic imaging |
| mesh[38].descriptor_name | Pancreatic Diseases |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D066264 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Datasets as Topic |
| mesh[40].qualifier_ui | |
| mesh[40].descriptor_ui | D006801 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | |
| mesh[40].descriptor_name | Humans |
| mesh[41].qualifier_ui | |
| mesh[41].descriptor_ui | D000077321 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | |
| mesh[41].descriptor_name | Deep Learning |
| mesh[42].qualifier_ui | Q000379 |
| mesh[42].descriptor_ui | D008279 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | methods |
| mesh[42].descriptor_name | Magnetic Resonance Imaging |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D012189 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Retrospective Studies |
| mesh[44].qualifier_ui | Q000379 |
| mesh[44].descriptor_ui | D014057 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | methods |
| mesh[44].descriptor_name | Tomography, X-Ray Computed |
| mesh[45].qualifier_ui | Q000000981 |
| mesh[45].descriptor_ui | D010179 |
| mesh[45].is_major_topic | False |
| mesh[45].qualifier_name | diagnostic imaging |
| mesh[45].descriptor_name | Pancreas |
| mesh[46].qualifier_ui | Q000000981 |
| mesh[46].descriptor_ui | D010182 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | diagnostic imaging |
| mesh[46].descriptor_name | Pancreatic Diseases |
| mesh[47].qualifier_ui | |
| mesh[47].descriptor_ui | D066264 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | |
| mesh[47].descriptor_name | Datasets as Topic |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D006801 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Humans |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D000077321 |
| mesh[49].is_major_topic | True |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Deep Learning |
| type | article |
| title | Large-scale multi-center CT and MRI segmentation of pancreas with deep learning |
| awards[0].id | https://openalex.org/G4442257866 |
| awards[0].funder_id | https://openalex.org/F4320332161 |
| awards[0].display_name | |
| awards[0].funder_award_id | R01-CA246704 |
| awards[0].funder_display_name | National Institutes of Health |
| awards[1].id | https://openalex.org/G4562991000 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | U01-CA268808 |
| awards[1].funder_display_name | National Institutes of Health |
| awards[2].id | https://openalex.org/G3649391186 |
| awards[2].funder_id | https://openalex.org/F4320332161 |
| awards[2].display_name | |
| awards[2].funder_award_id | U01-DK127384-02S1 |
| awards[2].funder_display_name | National Institutes of Health |
| awards[3].id | https://openalex.org/G4841406011 |
| awards[3].funder_id | https://openalex.org/F4320332161 |
| awards[3].display_name | |
| awards[3].funder_award_id | R01-CA240639 |
| awards[3].funder_display_name | National Institutes of Health |
| biblio.issue | |
| biblio.volume | 99 |
| biblio.last_page | 103382 |
| biblio.first_page | 103382 |
| topics[0].id | https://openalex.org/T10052 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9901000261306763 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Medical Image Segmentation Techniques |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T10522 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9836000204086304 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Medical Imaging Techniques and Applications |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| is_xpac | False |
| apc_list.value | 3970 |
| apc_list.currency | USD |
| apc_list.value_usd | 3970 |
| apc_paid.value | 3970 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3970 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7072232365608215 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6001160144805908 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5817036628723145 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5517645478248596 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C31972630 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5502352118492126 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[4].display_name | Computer vision |
| concepts[5].id | https://openalex.org/C2779463800 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5036830306053162 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5062222 |
| concepts[5].display_name | Center (category theory) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4976349174976349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3624820113182068 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32141175866127014 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.31530654430389404 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1751173734664917 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1544438600540161 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C8010536 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[12].display_name | Crystallography |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7072232365608215 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.6001160144805908 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5817036628723145 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5517645478248596 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/computer-vision |
| keywords[4].score | 0.5502352118492126 |
| keywords[4].display_name | Computer vision |
| keywords[5].id | https://openalex.org/keywords/center |
| keywords[5].score | 0.5036830306053162 |
| keywords[5].display_name | Center (category theory) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4976349174976349 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3624820113182068 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.32141175866127014 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.31530654430389404 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/cartography |
| keywords[10].score | 0.1751173734664917 |
| keywords[10].display_name | Cartography |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.1544438600540161 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1016/j.media.2024.103382 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S116571295 |
| locations[0].source.issn | 1361-8415, 1361-8423, 1361-8431 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1361-8415 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Medical Image Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Medical Image Analysis |
| locations[0].landing_page_url | https://doi.org/10.1016/j.media.2024.103382 |
| locations[1].id | pmid:39541706 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Medical image analysis |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39541706 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5100691434 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1868-9240 |
| authorships[0].author.display_name | Zheyuan Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[0].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[0].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Intel (United States) |
| authorships[0].institutions[1].id | https://openalex.org/I111979921 |
| authorships[0].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Northwestern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zheyuan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[1].author.id | https://openalex.org/A5072616384 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8103-797X |
| authorships[1].author.display_name | Elif Keleş |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[1].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[1].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Intel (United States) |
| authorships[1].institutions[1].id | https://openalex.org/I111979921 |
| authorships[1].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Northwestern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Elif Keles |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[2].author.id | https://openalex.org/A5033826718 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1608-1955 |
| authorships[2].author.display_name | Görkem Durak |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[2].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[2].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Intel (United States) |
| authorships[2].institutions[1].id | https://openalex.org/I111979921 |
| authorships[2].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | Northwestern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gorkem Durak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[3].author.id | https://openalex.org/A5098767843 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yavuz Taktak |
| authorships[3].countries | TR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I67581229 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[3].institutions[0].id | https://openalex.org/I67581229 |
| authorships[3].institutions[0].ror | https://ror.org/03a5qrr21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I67581229 |
| authorships[3].institutions[0].country_code | TR |
| authorships[3].institutions[0].display_name | Istanbul University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yavuz Taktak |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[4].author.id | https://openalex.org/A5004353809 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4511-1858 |
| authorships[4].author.display_name | Onkar Susladkar |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[4].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[4].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[4].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Intel (United States) |
| authorships[4].institutions[1].id | https://openalex.org/I111979921 |
| authorships[4].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Northwestern University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Onkar Susladkar |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[5].author.id | https://openalex.org/A5057901186 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5389-3373 |
| authorships[5].author.display_name | Vandan Gorade |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[5].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[5].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[5].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Intel (United States) |
| authorships[5].institutions[1].id | https://openalex.org/I111979921 |
| authorships[5].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Northwestern University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Vandan Gorade |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[6].author.id | https://openalex.org/A5044673103 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8078-6730 |
| authorships[6].author.display_name | Debesh Jha |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[6].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[6].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[6].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Intel (United States) |
| authorships[6].institutions[1].id | https://openalex.org/I111979921 |
| authorships[6].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Northwestern University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Debesh Jha |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[7].author.id | https://openalex.org/A5111209144 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Asli C. Ormeci |
| authorships[7].countries | TR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I67581229 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[7].institutions[0].id | https://openalex.org/I67581229 |
| authorships[7].institutions[0].ror | https://ror.org/03a5qrr21 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I67581229 |
| authorships[7].institutions[0].country_code | TR |
| authorships[7].institutions[0].display_name | Istanbul University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Asli C Ormeci |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[8].author.id | https://openalex.org/A5053519611 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5829-9186 |
| authorships[8].author.display_name | Alpay Medetalibeyoğlu |
| authorships[8].countries | TR, US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I67581229 |
| authorships[8].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA; Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[8].institutions[0].id | https://openalex.org/I67581229 |
| authorships[8].institutions[0].ror | https://ror.org/03a5qrr21 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I67581229 |
| authorships[8].institutions[0].country_code | TR |
| authorships[8].institutions[0].display_name | Istanbul University |
| authorships[8].institutions[1].id | https://openalex.org/I111979921 |
| authorships[8].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | Northwestern University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Alpay Medetalibeyoglu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA; Department of Internal Medicine, Istanbul University Faculty of Medicine, Istanbul, Turkey. |
| authorships[9].author.id | https://openalex.org/A5112992194 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Lanhong Yao |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[9].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[9].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[9].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[9].institutions[0].type | company |
| authorships[9].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Intel (United States) |
| authorships[9].institutions[1].id | https://openalex.org/I111979921 |
| authorships[9].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[9].institutions[1].country_code | US |
| authorships[9].institutions[1].display_name | Northwestern University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lanhong Yao |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[10].author.id | https://openalex.org/A5104189020 |
| authorships[10].author.orcid | https://orcid.org/0009-0007-3155-3790 |
| authorships[10].author.display_name | Bin Wang |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[10].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[10].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[10].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[10].institutions[0].type | company |
| authorships[10].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Intel (United States) |
| authorships[10].institutions[1].id | https://openalex.org/I111979921 |
| authorships[10].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[10].institutions[1].country_code | US |
| authorships[10].institutions[1].display_name | Northwestern University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Bin Wang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[11].author.id | https://openalex.org/A5053518169 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Ilkin Isler |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I106165777, https://openalex.org/I111979921 |
| authorships[11].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA; Department of Computer Science, University of Central Florida, Florida, FL, USA. |
| authorships[11].institutions[0].id | https://openalex.org/I111979921 |
| authorships[11].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Northwestern University |
| authorships[11].institutions[1].id | https://openalex.org/I106165777 |
| authorships[11].institutions[1].ror | https://ror.org/036nfer12 |
| authorships[11].institutions[1].type | education |
| authorships[11].institutions[1].lineage | https://openalex.org/I106165777 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | University of Central Florida |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Ilkin Sevgi Isler |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA; Department of Computer Science, University of Central Florida, Florida, FL, USA. |
| authorships[12].author.id | https://openalex.org/A5037672272 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Linkai Peng |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[12].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[12].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[12].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[12].institutions[0].type | company |
| authorships[12].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Intel (United States) |
| authorships[12].institutions[1].id | https://openalex.org/I111979921 |
| authorships[12].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[12].institutions[1].type | education |
| authorships[12].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[12].institutions[1].country_code | US |
| authorships[12].institutions[1].display_name | Northwestern University |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Linkai Peng |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[13].author.id | https://openalex.org/A5002608156 |
| authorships[13].author.orcid | https://orcid.org/0000-0001-9421-3936 |
| authorships[13].author.display_name | Hongyi Pan |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[13].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[13].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[13].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[13].institutions[0].type | company |
| authorships[13].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Intel (United States) |
| authorships[13].institutions[1].id | https://openalex.org/I111979921 |
| authorships[13].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[13].institutions[1].type | education |
| authorships[13].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[13].institutions[1].country_code | US |
| authorships[13].institutions[1].display_name | Northwestern University |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Hongyi Pan |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[14].author.id | https://openalex.org/A5104318396 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-9604-2795 |
| authorships[14].author.display_name | Camila Lopes Vendrami |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[14].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[14].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[14].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[14].institutions[0].type | company |
| authorships[14].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Intel (United States) |
| authorships[14].institutions[1].id | https://openalex.org/I111979921 |
| authorships[14].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[14].institutions[1].country_code | US |
| authorships[14].institutions[1].display_name | Northwestern University |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Camila Lopes Vendrami |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[15].author.id | https://openalex.org/A5098767842 |
| authorships[15].author.orcid | |
| authorships[15].author.display_name | Amir Bourhani |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[15].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[15].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[15].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[15].institutions[0].type | company |
| authorships[15].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | Intel (United States) |
| authorships[15].institutions[1].id | https://openalex.org/I111979921 |
| authorships[15].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[15].institutions[1].type | education |
| authorships[15].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[15].institutions[1].country_code | US |
| authorships[15].institutions[1].display_name | Northwestern University |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Amir Bourhani |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[16].author.id | https://openalex.org/A5066776275 |
| authorships[16].author.orcid | https://orcid.org/0000-0002-2287-5727 |
| authorships[16].author.display_name | Yury Velichko |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[16].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[16].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[16].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[16].institutions[0].type | company |
| authorships[16].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[16].institutions[0].country_code | US |
| authorships[16].institutions[0].display_name | Intel (United States) |
| authorships[16].institutions[1].id | https://openalex.org/I111979921 |
| authorships[16].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[16].institutions[1].type | education |
| authorships[16].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[16].institutions[1].country_code | US |
| authorships[16].institutions[1].display_name | Northwestern University |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Yury Velichko |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[17].author.id | https://openalex.org/A5017319429 |
| authorships[17].author.orcid | https://orcid.org/0000-0003-3915-5977 |
| authorships[17].author.display_name | Boqing Gong |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[17].affiliations[0].raw_affiliation_string | Google Research, Seattle, WA, USA. |
| authorships[17].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[17].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[17].institutions[0].type | company |
| authorships[17].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | Google (United States) |
| authorships[17].author_position | middle |
| authorships[17].raw_author_name | Boqing Gong |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | Google Research, Seattle, WA, USA. |
| authorships[18].author.id | https://openalex.org/A5075815307 |
| authorships[18].author.orcid | https://orcid.org/0000-0001-6653-2577 |
| authorships[18].author.display_name | Concetto Spampinato |
| authorships[18].countries | IT |
| authorships[18].affiliations[0].institution_ids | https://openalex.org/I39063666 |
| authorships[18].affiliations[0].raw_affiliation_string | University of Catania, Catania, Italy. |
| authorships[18].institutions[0].id | https://openalex.org/I39063666 |
| authorships[18].institutions[0].ror | https://ror.org/03a64bh57 |
| authorships[18].institutions[0].type | education |
| authorships[18].institutions[0].lineage | https://openalex.org/I39063666 |
| authorships[18].institutions[0].country_code | IT |
| authorships[18].institutions[0].display_name | University of Catania |
| authorships[18].author_position | middle |
| authorships[18].raw_author_name | Concetto Spampinato |
| authorships[18].is_corresponding | False |
| authorships[18].raw_affiliation_strings | University of Catania, Catania, Italy. |
| authorships[19].author.id | https://openalex.org/A5055113943 |
| authorships[19].author.orcid | https://orcid.org/0000-0002-8108-4706 |
| authorships[19].author.display_name | Ayis Pyrros |
| authorships[19].countries | US |
| authorships[19].affiliations[0].institution_ids | https://openalex.org/I157725225, https://openalex.org/I39422238 |
| authorships[19].affiliations[0].raw_affiliation_string | Department of Radiology, Duly Health and Care and Department of Biomedical and Health Information Sciences, University of Illinois Chicago, Chicago, IL, USA. |
| authorships[19].institutions[0].id | https://openalex.org/I39422238 |
| authorships[19].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[19].institutions[0].type | education |
| authorships[19].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[19].institutions[0].country_code | US |
| authorships[19].institutions[0].display_name | University of Illinois Chicago |
| authorships[19].institutions[1].id | https://openalex.org/I157725225 |
| authorships[19].institutions[1].ror | https://ror.org/047426m28 |
| authorships[19].institutions[1].type | education |
| authorships[19].institutions[1].lineage | https://openalex.org/I157725225 |
| authorships[19].institutions[1].country_code | US |
| authorships[19].institutions[1].display_name | University of Illinois Urbana-Champaign |
| authorships[19].author_position | middle |
| authorships[19].raw_author_name | Ayis Pyrros |
| authorships[19].is_corresponding | False |
| authorships[19].raw_affiliation_strings | Department of Radiology, Duly Health and Care and Department of Biomedical and Health Information Sciences, University of Illinois Chicago, Chicago, IL, USA. |
| authorships[20].author.id | https://openalex.org/A5042392208 |
| authorships[20].author.orcid | https://orcid.org/0000-0001-9477-4856 |
| authorships[20].author.display_name | Pallavi Tiwari |
| authorships[20].countries | US |
| authorships[20].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[20].affiliations[0].raw_affiliation_string | Dept of Biomedical Engineering, University of Wisconsin-Madison, WI, USA. |
| authorships[20].institutions[0].id | https://openalex.org/I135310074 |
| authorships[20].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[20].institutions[0].type | education |
| authorships[20].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[20].institutions[0].country_code | US |
| authorships[20].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[20].author_position | middle |
| authorships[20].raw_author_name | Pallavi Tiwari |
| authorships[20].is_corresponding | False |
| authorships[20].raw_affiliation_strings | Dept of Biomedical Engineering, University of Wisconsin-Madison, WI, USA. |
| authorships[21].author.id | https://openalex.org/A5015175917 |
| authorships[21].author.orcid | https://orcid.org/0000-0003-2531-6725 |
| authorships[21].author.display_name | Derk C.F. Klatte |
| authorships[21].countries | NL, US |
| authorships[21].affiliations[0].institution_ids | https://openalex.org/I4210146710, https://openalex.org/I4210151833, https://openalex.org/I887064364 |
| authorships[21].affiliations[0].raw_affiliation_string | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[21].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[21].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[21].institutions[0].type | healthcare |
| authorships[21].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[21].institutions[0].country_code | NL |
| authorships[21].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[21].institutions[1].id | https://openalex.org/I887064364 |
| authorships[21].institutions[1].ror | https://ror.org/04dkp9463 |
| authorships[21].institutions[1].type | education |
| authorships[21].institutions[1].lineage | https://openalex.org/I887064364 |
| authorships[21].institutions[1].country_code | NL |
| authorships[21].institutions[1].display_name | University of Amsterdam |
| authorships[21].institutions[2].id | https://openalex.org/I4210146710 |
| authorships[21].institutions[2].ror | https://ror.org/03zzw1w08 |
| authorships[21].institutions[2].type | healthcare |
| authorships[21].institutions[2].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[21].institutions[2].country_code | US |
| authorships[21].institutions[2].display_name | Mayo Clinic in Florida |
| authorships[21].author_position | middle |
| authorships[21].raw_author_name | Derk C F Klatte |
| authorships[21].is_corresponding | False |
| authorships[21].raw_affiliation_strings | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[22].author.id | https://openalex.org/A5008153923 |
| authorships[22].author.orcid | https://orcid.org/0000-0002-4708-3750 |
| authorships[22].author.display_name | Megan Engels |
| authorships[22].countries | NL, US |
| authorships[22].affiliations[0].institution_ids | https://openalex.org/I4210146710, https://openalex.org/I4210151833, https://openalex.org/I887064364 |
| authorships[22].affiliations[0].raw_affiliation_string | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[22].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[22].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[22].institutions[0].type | healthcare |
| authorships[22].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[22].institutions[0].country_code | NL |
| authorships[22].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[22].institutions[1].id | https://openalex.org/I887064364 |
| authorships[22].institutions[1].ror | https://ror.org/04dkp9463 |
| authorships[22].institutions[1].type | education |
| authorships[22].institutions[1].lineage | https://openalex.org/I887064364 |
| authorships[22].institutions[1].country_code | NL |
| authorships[22].institutions[1].display_name | University of Amsterdam |
| authorships[22].institutions[2].id | https://openalex.org/I4210146710 |
| authorships[22].institutions[2].ror | https://ror.org/03zzw1w08 |
| authorships[22].institutions[2].type | healthcare |
| authorships[22].institutions[2].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[22].institutions[2].country_code | US |
| authorships[22].institutions[2].display_name | Mayo Clinic in Florida |
| authorships[22].author_position | middle |
| authorships[22].raw_author_name | Megan Engels |
| authorships[22].is_corresponding | False |
| authorships[22].raw_affiliation_strings | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[23].author.id | https://openalex.org/A5072442709 |
| authorships[23].author.orcid | |
| authorships[23].author.display_name | Sanne Hoogenboom |
| authorships[23].countries | NL, US |
| authorships[23].affiliations[0].institution_ids | https://openalex.org/I4210146710, https://openalex.org/I4210151833, https://openalex.org/I887064364 |
| authorships[23].affiliations[0].raw_affiliation_string | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[23].institutions[0].id | https://openalex.org/I4210151833 |
| authorships[23].institutions[0].ror | https://ror.org/05grdyy37 |
| authorships[23].institutions[0].type | healthcare |
| authorships[23].institutions[0].lineage | https://openalex.org/I4210151833 |
| authorships[23].institutions[0].country_code | NL |
| authorships[23].institutions[0].display_name | Amsterdam University Medical Centers |
| authorships[23].institutions[1].id | https://openalex.org/I887064364 |
| authorships[23].institutions[1].ror | https://ror.org/04dkp9463 |
| authorships[23].institutions[1].type | education |
| authorships[23].institutions[1].lineage | https://openalex.org/I887064364 |
| authorships[23].institutions[1].country_code | NL |
| authorships[23].institutions[1].display_name | University of Amsterdam |
| authorships[23].institutions[2].id | https://openalex.org/I4210146710 |
| authorships[23].institutions[2].ror | https://ror.org/03zzw1w08 |
| authorships[23].institutions[2].type | healthcare |
| authorships[23].institutions[2].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[23].institutions[2].country_code | US |
| authorships[23].institutions[2].display_name | Mayo Clinic in Florida |
| authorships[23].author_position | middle |
| authorships[23].raw_author_name | Sanne Hoogenboom |
| authorships[23].is_corresponding | False |
| authorships[23].raw_affiliation_strings | Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Netherlands; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[24].author.id | https://openalex.org/A5055352623 |
| authorships[24].author.orcid | https://orcid.org/0000-0002-9847-3599 |
| authorships[24].author.display_name | Candice W. Bolan |
| authorships[24].countries | US |
| authorships[24].affiliations[0].institution_ids | https://openalex.org/I2802423016, https://openalex.org/I4210146710 |
| authorships[24].affiliations[0].raw_affiliation_string | Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[24].institutions[0].id | https://openalex.org/I4210146710 |
| authorships[24].institutions[0].ror | https://ror.org/03zzw1w08 |
| authorships[24].institutions[0].type | healthcare |
| authorships[24].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[24].institutions[0].country_code | US |
| authorships[24].institutions[0].display_name | Mayo Clinic in Florida |
| authorships[24].institutions[1].id | https://openalex.org/I2802423016 |
| authorships[24].institutions[1].ror | https://ror.org/02s47w807 |
| authorships[24].institutions[1].type | nonprofit |
| authorships[24].institutions[1].lineage | https://openalex.org/I2802423016 |
| authorships[24].institutions[1].country_code | US |
| authorships[24].institutions[1].display_name | WinnMed |
| authorships[24].author_position | middle |
| authorships[24].raw_author_name | Candice W Bolan |
| authorships[24].is_corresponding | False |
| authorships[24].raw_affiliation_strings | Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. |
| authorships[25].author.id | https://openalex.org/A5025249895 |
| authorships[25].author.orcid | |
| authorships[25].author.display_name | Emil Agarunov |
| authorships[25].countries | US |
| authorships[25].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[25].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, New York University, NY, USA. |
| authorships[25].institutions[0].id | https://openalex.org/I57206974 |
| authorships[25].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[25].institutions[0].type | education |
| authorships[25].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[25].institutions[0].country_code | US |
| authorships[25].institutions[0].display_name | New York University |
| authorships[25].author_position | middle |
| authorships[25].raw_author_name | Emil Agarunov |
| authorships[25].is_corresponding | False |
| authorships[25].raw_affiliation_strings | Division of Gastroenterology and Hepatology, New York University, NY, USA. |
| authorships[26].author.id | https://openalex.org/A5062794477 |
| authorships[26].author.orcid | https://orcid.org/0000-0003-4662-3919 |
| authorships[26].author.display_name | Nassier Harfouch |
| authorships[26].countries | US |
| authorships[26].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[26].affiliations[0].raw_affiliation_string | Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA. |
| authorships[26].institutions[0].id | https://openalex.org/I57206974 |
| authorships[26].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[26].institutions[0].type | education |
| authorships[26].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[26].institutions[0].country_code | US |
| authorships[26].institutions[0].display_name | New York University |
| authorships[26].author_position | middle |
| authorships[26].raw_author_name | Nassier Harfouch |
| authorships[26].is_corresponding | False |
| authorships[26].raw_affiliation_strings | Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA. |
| authorships[27].author.id | https://openalex.org/A5013905338 |
| authorships[27].author.orcid | https://orcid.org/0000-0002-9530-1206 |
| authorships[27].author.display_name | Chenchan Huang |
| authorships[27].countries | US |
| authorships[27].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[27].affiliations[0].raw_affiliation_string | Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA. |
| authorships[27].institutions[0].id | https://openalex.org/I57206974 |
| authorships[27].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[27].institutions[0].type | education |
| authorships[27].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[27].institutions[0].country_code | US |
| authorships[27].institutions[0].display_name | New York University |
| authorships[27].author_position | middle |
| authorships[27].raw_author_name | Chenchan Huang |
| authorships[27].is_corresponding | False |
| authorships[27].raw_affiliation_strings | Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA. |
| authorships[28].author.id | https://openalex.org/A5042869763 |
| authorships[28].author.orcid | https://orcid.org/0000-0001-9181-5499 |
| authorships[28].author.display_name | Marco J. Bruno |
| authorships[28].countries | NL |
| authorships[28].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[28].affiliations[0].raw_affiliation_string | Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, Netherlands. |
| authorships[28].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[28].institutions[0].ror | https://ror.org/018906e22 |
| authorships[28].institutions[0].type | healthcare |
| authorships[28].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[28].institutions[0].country_code | NL |
| authorships[28].institutions[0].display_name | Erasmus MC |
| authorships[28].author_position | middle |
| authorships[28].raw_author_name | Marco J Bruno |
| authorships[28].is_corresponding | False |
| authorships[28].raw_affiliation_strings | Departments of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, Netherlands. |
| authorships[29].author.id | https://openalex.org/A5075546358 |
| authorships[29].author.orcid | https://orcid.org/0000-0002-9804-0603 |
| authorships[29].author.display_name | Ivo G. Schoots |
| authorships[29].countries | NL |
| authorships[29].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[29].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands. |
| authorships[29].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[29].institutions[0].ror | https://ror.org/018906e22 |
| authorships[29].institutions[0].type | healthcare |
| authorships[29].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[29].institutions[0].country_code | NL |
| authorships[29].institutions[0].display_name | Erasmus MC |
| authorships[29].author_position | middle |
| authorships[29].raw_author_name | Ivo Schoots |
| authorships[29].is_corresponding | False |
| authorships[29].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, Netherlands. |
| authorships[30].author.id | https://openalex.org/A5007181969 |
| authorships[30].author.orcid | https://orcid.org/0000-0002-9196-2138 |
| authorships[30].author.display_name | Rajesh N. Keswani |
| authorships[30].countries | US |
| authorships[30].affiliations[0].institution_ids | https://openalex.org/I111979921 |
| authorships[30].affiliations[0].raw_affiliation_string | Departments of Gastroenterology and Hepatology, Northwestern University, IL, USA. |
| authorships[30].institutions[0].id | https://openalex.org/I111979921 |
| authorships[30].institutions[0].ror | https://ror.org/000e0be47 |
| authorships[30].institutions[0].type | education |
| authorships[30].institutions[0].lineage | https://openalex.org/I111979921 |
| authorships[30].institutions[0].country_code | US |
| authorships[30].institutions[0].display_name | Northwestern University |
| authorships[30].author_position | middle |
| authorships[30].raw_author_name | Rajesh N Keswani |
| authorships[30].is_corresponding | False |
| authorships[30].raw_affiliation_strings | Departments of Gastroenterology and Hepatology, Northwestern University, IL, USA. |
| authorships[31].author.id | https://openalex.org/A5082906150 |
| authorships[31].author.orcid | https://orcid.org/0000-0001-9506-9411 |
| authorships[31].author.display_name | Frank H. Miller |
| authorships[31].countries | US |
| authorships[31].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[31].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[31].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[31].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[31].institutions[0].type | company |
| authorships[31].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[31].institutions[0].country_code | US |
| authorships[31].institutions[0].display_name | Intel (United States) |
| authorships[31].institutions[1].id | https://openalex.org/I111979921 |
| authorships[31].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[31].institutions[1].type | education |
| authorships[31].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[31].institutions[1].country_code | US |
| authorships[31].institutions[1].display_name | Northwestern University |
| authorships[31].author_position | middle |
| authorships[31].raw_author_name | Frank H Miller |
| authorships[31].is_corresponding | False |
| authorships[31].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. |
| authorships[32].author.id | https://openalex.org/A5066665388 |
| authorships[32].author.orcid | https://orcid.org/0000-0002-0093-3738 |
| authorships[32].author.display_name | Tamas A. Gonda |
| authorships[32].countries | US |
| authorships[32].affiliations[0].institution_ids | https://openalex.org/I57206974 |
| authorships[32].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, New York University, NY, USA. |
| authorships[32].institutions[0].id | https://openalex.org/I57206974 |
| authorships[32].institutions[0].ror | https://ror.org/0190ak572 |
| authorships[32].institutions[0].type | education |
| authorships[32].institutions[0].lineage | https://openalex.org/I57206974 |
| authorships[32].institutions[0].country_code | US |
| authorships[32].institutions[0].display_name | New York University |
| authorships[32].author_position | middle |
| authorships[32].raw_author_name | Tamas Gonda |
| authorships[32].is_corresponding | False |
| authorships[32].raw_affiliation_strings | Division of Gastroenterology and Hepatology, New York University, NY, USA. |
| authorships[33].author.id | https://openalex.org/A5088487852 |
| authorships[33].author.orcid | https://orcid.org/0000-0003-4839-0354 |
| authorships[33].author.display_name | Cemal Yazıcı |
| authorships[33].countries | US |
| authorships[33].affiliations[0].institution_ids | https://openalex.org/I39422238 |
| authorships[33].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA. |
| authorships[33].institutions[0].id | https://openalex.org/I39422238 |
| authorships[33].institutions[0].ror | https://ror.org/02mpq6x41 |
| authorships[33].institutions[0].type | education |
| authorships[33].institutions[0].lineage | https://openalex.org/I39422238 |
| authorships[33].institutions[0].country_code | US |
| authorships[33].institutions[0].display_name | University of Illinois Chicago |
| authorships[33].author_position | middle |
| authorships[33].raw_author_name | Cemal Yazici |
| authorships[33].is_corresponding | False |
| authorships[33].raw_affiliation_strings | Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL, USA. |
| authorships[34].author.id | https://openalex.org/A5075615898 |
| authorships[34].author.orcid | https://orcid.org/0000-0002-0185-8741 |
| authorships[34].author.display_name | Temel Tirkes |
| authorships[34].countries | US |
| authorships[34].affiliations[0].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[34].affiliations[0].raw_affiliation_string | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA. |
| authorships[34].institutions[0].id | https://openalex.org/I4394709130 |
| authorships[34].institutions[0].ror | https://ror.org/02ets8c94 |
| authorships[34].institutions[0].type | education |
| authorships[34].institutions[0].lineage | https://openalex.org/I4394709130, https://openalex.org/I592451 |
| authorships[34].institutions[0].country_code | |
| authorships[34].institutions[0].display_name | Indiana University School of Medicine |
| authorships[34].institutions[1].id | https://openalex.org/I55769427 |
| authorships[34].institutions[1].ror | https://ror.org/05gxnyn08 |
| authorships[34].institutions[1].type | education |
| authorships[34].institutions[1].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[34].institutions[1].country_code | US |
| authorships[34].institutions[1].display_name | Indiana University – Purdue University Indianapolis |
| authorships[34].author_position | middle |
| authorships[34].raw_author_name | Temel Tirkes |
| authorships[34].is_corresponding | False |
| authorships[34].raw_affiliation_strings | Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA. |
| authorships[35].author.id | https://openalex.org/A5022455023 |
| authorships[35].author.orcid | https://orcid.org/0000-0003-0853-6494 |
| authorships[35].author.display_name | Barış Türkbey |
| authorships[35].countries | US |
| authorships[35].affiliations[0].institution_ids | https://openalex.org/I1299303238, https://openalex.org/I4210140884 |
| authorships[35].affiliations[0].raw_affiliation_string | Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. |
| authorships[35].institutions[0].id | https://openalex.org/I4210140884 |
| authorships[35].institutions[0].ror | https://ror.org/040gcmg81 |
| authorships[35].institutions[0].type | government |
| authorships[35].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I4210140884 |
| authorships[35].institutions[0].country_code | US |
| authorships[35].institutions[0].display_name | National Cancer Institute |
| authorships[35].institutions[1].id | https://openalex.org/I1299303238 |
| authorships[35].institutions[1].ror | https://ror.org/01cwqze88 |
| authorships[35].institutions[1].type | government |
| authorships[35].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[35].institutions[1].country_code | US |
| authorships[35].institutions[1].display_name | National Institutes of Health |
| authorships[35].author_position | middle |
| authorships[35].raw_author_name | Baris Turkbey |
| authorships[35].is_corresponding | False |
| authorships[35].raw_affiliation_strings | Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. |
| authorships[36].author.id | https://openalex.org/A5010559287 |
| authorships[36].author.orcid | https://orcid.org/0000-0002-6446-5785 |
| authorships[36].author.display_name | Michael B. Wallace |
| authorships[36].countries | US |
| authorships[36].affiliations[0].institution_ids | https://openalex.org/I2801572250, https://openalex.org/I4210146710 |
| authorships[36].affiliations[0].raw_affiliation_string | Division of Gastroenterology and Hepatology, Mayo Clinic in Florida, Jacksonville, USA. |
| authorships[36].institutions[0].id | https://openalex.org/I2801572250 |
| authorships[36].institutions[0].ror | https://ror.org/03a9t7g49 |
| authorships[36].institutions[0].type | education |
| authorships[36].institutions[0].lineage | https://openalex.org/I2801572250 |
| authorships[36].institutions[0].country_code | US |
| authorships[36].institutions[0].display_name | Jacksonville College |
| authorships[36].institutions[1].id | https://openalex.org/I4210146710 |
| authorships[36].institutions[1].ror | https://ror.org/03zzw1w08 |
| authorships[36].institutions[1].type | healthcare |
| authorships[36].institutions[1].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210146710 |
| authorships[36].institutions[1].country_code | US |
| authorships[36].institutions[1].display_name | Mayo Clinic in Florida |
| authorships[36].author_position | middle |
| authorships[36].raw_author_name | Michael B Wallace |
| authorships[36].is_corresponding | False |
| authorships[36].raw_affiliation_strings | Division of Gastroenterology and Hepatology, Mayo Clinic in Florida, Jacksonville, USA. |
| authorships[37].author.id | https://openalex.org/A5030188696 |
| authorships[37].author.orcid | https://orcid.org/0000-0001-7379-6829 |
| authorships[37].author.display_name | Ulaş Bağcı |
| authorships[37].countries | US |
| authorships[37].affiliations[0].institution_ids | https://openalex.org/I111979921, https://openalex.org/I1343180700 |
| authorships[37].affiliations[0].raw_affiliation_string | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. Electronic address: [email protected]. |
| authorships[37].institutions[0].id | https://openalex.org/I1343180700 |
| authorships[37].institutions[0].ror | https://ror.org/01ek73717 |
| authorships[37].institutions[0].type | company |
| authorships[37].institutions[0].lineage | https://openalex.org/I1343180700 |
| authorships[37].institutions[0].country_code | US |
| authorships[37].institutions[0].display_name | Intel (United States) |
| authorships[37].institutions[1].id | https://openalex.org/I111979921 |
| authorships[37].institutions[1].ror | https://ror.org/000e0be47 |
| authorships[37].institutions[1].type | education |
| authorships[37].institutions[1].lineage | https://openalex.org/I111979921 |
| authorships[37].institutions[1].country_code | US |
| authorships[37].institutions[1].display_name | Northwestern University |
| authorships[37].author_position | last |
| authorships[37].raw_author_name | Ulas Bagci |
| authorships[37].is_corresponding | False |
| authorships[37].raw_affiliation_strings | Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, USA. Electronic address: [email protected]. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.media.2024.103382 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Large-scale multi-center CT and MRI segmentation of pancreas with deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10052 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9901000261306763 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Medical Image Segmentation Techniques |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2188431416, https://openalex.org/W2065091555, https://openalex.org/W2371189778, https://openalex.org/W1573667629, https://openalex.org/W654422885, https://openalex.org/W4245286412, https://openalex.org/W2731899572, https://openalex.org/W4230611425 |
| cited_by_count | 33 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 30 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.media.2024.103382 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S116571295 |
| best_oa_location.source.issn | 1361-8415, 1361-8423, 1361-8431 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1361-8415 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Medical Image Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Medical Image Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.media.2024.103382 |
| primary_location.id | doi:10.1016/j.media.2024.103382 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S116571295 |
| primary_location.source.issn | 1361-8415, 1361-8423, 1361-8431 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1361-8415 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Medical Image Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Medical Image Analysis |
| primary_location.landing_page_url | https://doi.org/10.1016/j.media.2024.103382 |
| publication_date | 2024-11-08 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3088134661, https://openalex.org/W3172681723, https://openalex.org/W2153269637, https://openalex.org/W1496786850, https://openalex.org/W6727244432, https://openalex.org/W2136198545, https://openalex.org/W4388834713, https://openalex.org/W2083927153, https://openalex.org/W3035367255, https://openalex.org/W2791680898, https://openalex.org/W4394625805, https://openalex.org/W6810465815, https://openalex.org/W3132126832, https://openalex.org/W3014974815, https://openalex.org/W6864540790, https://openalex.org/W6839656003, https://openalex.org/W4390874575, https://openalex.org/W2964227007, https://openalex.org/W2988804050, https://openalex.org/W4220708658, https://openalex.org/W4391109864, https://openalex.org/W3183302989, https://openalex.org/W2936801852, https://openalex.org/W2140571042, https://openalex.org/W6758670517, https://openalex.org/W2089031046, https://openalex.org/W3204255355, https://openalex.org/W6639824700, https://openalex.org/W2792124446, https://openalex.org/W2790099571, https://openalex.org/W2301226317, https://openalex.org/W2991526275, https://openalex.org/W6844953575, https://openalex.org/W4383998458, https://openalex.org/W2945895877, https://openalex.org/W2905502108, https://openalex.org/W2799142782, https://openalex.org/W2133745351, https://openalex.org/W6846611385, https://openalex.org/W3164977201, https://openalex.org/W2995831461, https://openalex.org/W6728975134, https://openalex.org/W6838692439, https://openalex.org/W4380883037, https://openalex.org/W6763180930, https://openalex.org/W2982043723, https://openalex.org/W6791875987, https://openalex.org/W6753452578, https://openalex.org/W3033529678, https://openalex.org/W4253974813, https://openalex.org/W4254998574, https://openalex.org/W4283072464, https://openalex.org/W4233182706, https://openalex.org/W4295838474, https://openalex.org/W4298110661, https://openalex.org/W4400767051, https://openalex.org/W4289639938, https://openalex.org/W3104390926, https://openalex.org/W3112701542, https://openalex.org/W4312850573, https://openalex.org/W3101333263, https://openalex.org/W2798122215, https://openalex.org/W2737861363, https://openalex.org/W2535166298, https://openalex.org/W4233293472, https://openalex.org/W2524644797, https://openalex.org/W4300850450 |
| referenced_works_count | 67 |
| abstract_inverted_index.W | 184, 191, 226, 229 |
| abstract_inverted_index.a | 33, 53, 98, 111, 115, 195 |
| abstract_inverted_index.(a | 129 |
| abstract_inverted_index.CT | 84 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.T1 | 183, 211, 225 |
| abstract_inverted_index.T2 | 190, 214, 228 |
| abstract_inverted_index.W) | 64, 68 |
| abstract_inverted_index.W, | 212, 215 |
| abstract_inverted_index.We | 81, 96, 123, 145, 217 |
| abstract_inverted_index.at | 175, 243, 250 |
| abstract_inverted_index.in | 127 |
| abstract_inverted_index.is | 9, 22, 240, 248 |
| abstract_inverted_index.of | 3, 15, 35, 61, 86, 108, 131, 172, 204 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.to | 32 |
| abstract_inverted_index.we | 51, 168 |
| abstract_inverted_index.(T1 | 63 |
| abstract_inverted_index.(T2 | 67 |
| abstract_inverted_index.499 | 59 |
| abstract_inverted_index.All | 237 |
| abstract_inverted_index.CT, | 179, 210 |
| abstract_inverted_index.For | 165 |
| abstract_inverted_index.MRI | 70, 238 |
| abstract_inverted_index.Our | 245 |
| abstract_inverted_index.and | 13, 42, 65, 78, 110, 134, 139, 152, 156, 161, 186, 207, 213, 222, 227, 232 |
| abstract_inverted_index.are | 28 |
| abstract_inverted_index.due | 31 |
| abstract_inverted_index.for | 11, 93, 150, 159, 198, 209, 224 |
| abstract_inverted_index.new | 99, 116 |
| abstract_inverted_index.the | 4, 106 |
| abstract_inverted_index.was | 194 |
| abstract_inverted_index.(767 | 56 |
| abstract_inverted_index.0.85 | 208 |
| abstract_inverted_index.2004 | 77 |
| abstract_inverted_index.Dice | 138, 162, 170 |
| abstract_inverted_index.MRI, | 185, 230 |
| abstract_inverted_index.MRI. | 192 |
| abstract_inverted_index.also | 82 |
| abstract_inverted_index.case | 176 |
| abstract_inverted_index.code | 247 |
| abstract_inverted_index.data | 239 |
| abstract_inverted_index.deep | 44 |
| abstract_inverted_index.five | 73 |
| abstract_inverted_index.from | 58, 72, 89 |
| abstract_inverted_index.high | 196, 233 |
| abstract_inverted_index.lack | 34 |
| abstract_inverted_index.made | 241 |
| abstract_inverted_index.more | 23 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.used | 146 |
| abstract_inverted_index.with | 114, 137, 178, 182, 189, 202 |
| abstract_inverted_index.0.638 | 223 |
| abstract_inverted_index.0.84, | 206 |
| abstract_inverted_index.0.91, | 205 |
| abstract_inverted_index.1,350 | 87 |
| abstract_inverted_index.2,117 | 132 |
| abstract_inverted_index.2022. | 80 |
| abstract_inverted_index.85.0% | 180 |
| abstract_inverted_index.86.3% | 187 |
| abstract_inverted_index.88.3% | 173 |
| abstract_inverted_index.March | 76 |
| abstract_inverted_index.There | 193 |
| abstract_inverted_index.While | 18 |
| abstract_inverted_index.found | 218 |
| abstract_inverted_index.intra | 151 |
| abstract_inverted_index.kappa | 148 |
| abstract_inverted_index.large | 54 |
| abstract_inverted_index.scans | 57, 85 |
| abstract_inverted_index.total | 130 |
| abstract_inverted_index.(0.624 | 221 |
| abstract_inverted_index.(HD95) | 142 |
| abstract_inverted_index.called | 103 |
| abstract_inverted_index.level) | 177 |
| abstract_inverted_index.linear | 117 |
| abstract_inverted_index.module | 119 |
| abstract_inverted_index.needed | 10 |
| abstract_inverted_index.nnUNet | 109 |
| abstract_inverted_index.paired | 157 |
| abstract_inverted_index.scans) | 133 |
| abstract_inverted_index.series | 71 |
| abstract_inverted_index.source | 246 |
| abstract_inverted_index.study, | 50 |
| abstract_inverted_index.tested | 124 |
| abstract_inverted_index.volume | 160, 200 |
| abstract_inverted_index.Cohen's | 147 |
| abstract_inverted_index.between | 75 |
| abstract_inverted_index.centers | 74 |
| abstract_inverted_index.dataset | 55 |
| abstract_inverted_index.imaging | 8 |
| abstract_inverted_index.largely | 30 |
| abstract_inverted_index.method, | 102 |
| abstract_inverted_index.methods | 27 |
| abstract_inverted_index.network | 113 |
| abstract_inverted_index.scores. | 236 |
| abstract_inverted_index.sources | 92 |
| abstract_inverted_index.t-tests | 158 |
| abstract_inverted_index.(±6.4%) | 188 |
| abstract_inverted_index.(±7.2%, | 174 |
| abstract_inverted_index.(±7.9%) | 181 |
| abstract_inverted_index.CT-based | 19 |
| abstract_inverted_index.November | 79 |
| abstract_inverted_index.accuracy | 126 |
| abstract_inverted_index.achieved | 169 |
| abstract_inverted_index.distance | 141 |
| abstract_inverted_index.efforts, | 41 |
| abstract_inverted_index.enabling | 120 |
| abstract_inverted_index.learning | 45 |
| abstract_inverted_index.methods. | 46 |
| abstract_inverted_index.metrics. | 144 |
| abstract_inverted_index.moderate | 219 |
| abstract_inverted_index.pancreas | 5, 100, 199 |
| abstract_inverted_index.patients | 88 |
| abstract_inverted_index.publicly | 36, 90 |
| abstract_inverted_index.research | 40 |
| abstract_inverted_index.settings | 136 |
| abstract_inverted_index.Automated | 0 |
| abstract_inverted_index.Hausdorff | 140 |
| abstract_inverted_index.MRI-based | 25 |
| abstract_inverted_index.abdominal | 69 |
| abstract_inverted_index.accuracy, | 167 |
| abstract_inverted_index.agreement | 154, 235 |
| abstract_inverted_index.attention | 118 |
| abstract_inverted_index.available | 37, 91, 242, 249 |
| abstract_inverted_index.collected | 52, 83 |
| abstract_inverted_index.combining | 105 |
| abstract_inverted_index.datasets, | 38 |
| abstract_inverted_index.diagnosis | 12 |
| abstract_inverted_index.diseases. | 17 |
| abstract_inverted_index.follow-up | 14 |
| abstract_inverted_index.purposes. | 95 |
| abstract_inverted_index.strengths | 107 |
| abstract_inverted_index.PanSegNet, | 104 |
| abstract_inverted_index.evaluation | 143, 155 |
| abstract_inverted_index.introduced | 97 |
| abstract_inverted_index.pancreatic | 16, 20 |
| abstract_inverted_index.prediction | 201 |
| abstract_inverted_index.statistics | 149 |
| abstract_inverted_index.volumetric | 1, 121 |
| abstract_inverted_index.PanSegNet's | 125 |
| abstract_inverted_index.T1-weighted | 62 |
| abstract_inverted_index.T2-weighted | 66 |
| abstract_inverted_index.Transformer | 112 |
| abstract_inverted_index.correlation | 197 |
| abstract_inverted_index.inter-rater | 153 |
| abstract_inverted_index.benchmarking | 39, 94 |
| abstract_inverted_index.coefficients | 171 |
| abstract_inverted_index.comparisons, | 163 |
| abstract_inverted_index.computation. | 122 |
| abstract_inverted_index.cross-center | 135 |
| abstract_inverted_index.established, | 24 |
| abstract_inverted_index.segmentation | 2, 21, 26, 101, 166 |
| abstract_inverted_index.R<sup>2</sup> | 203 |
| abstract_inverted_index.participants) | 60 |
| abstract_inverted_index.respectively) | 231 |
| abstract_inverted_index.respectively. | 164, 216 |
| abstract_inverted_index.retrospective | 49 |
| abstract_inverted_index.understudied, | 29 |
| abstract_inverted_index.cross-modality | 128 |
| abstract_inverted_index.inter-observer | 220 |
| abstract_inverted_index.intra-observer | 234 |
| abstract_inverted_index.cross-sectional | 7 |
| abstract_inverted_index.domain-specific | 43 |
| abstract_inverted_index.https://osf.io/kysnj/. | 244 |
| abstract_inverted_index.https://github.com/NUBagciLab/PaNSegNet. | 251 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 38 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.99067239 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |