LatBot: Distilling Universal Latent Actions for Vision-Language-Action Models Article Swipe
Learning transferable latent actions from large-scale object manipulation videos can significantly enhance generalization in downstream robotics tasks, as such representations are agnostic to different robot embodiments. Existing approaches primarily rely on visual reconstruction objectives while neglecting physical priors, leading to sub-optimal performance in learning universal representations. To address these challenges, we propose a Universal Latent Action Learning framework that takes task instructions and multiple frames as inputs, and optimizes both future frame reconstruction and action sequence prediction. Unlike prior works, incorporating action predictions (e.g., gripper or hand trajectories and orientations) allows the model to capture richer physical priors such as real-world distances and orientations, thereby enabling seamless transferability to downstream tasks. We further decompose the latent actions into learnable motion and scene tokens to distinguish the robot's active movements from environmental changes, thus filtering out irrelevant dynamics. By distilling the learned latent actions into the latest VLA models, we achieve strong performance across both simulated (SIMPLER and LIBERO) and real-world robot settings. Notably, with only 10 real-world trajectories per task collected on a Franka robot, our approach successfully completes all five challenging tasks, demonstrating strong few-shot transferability in robotic manipulation.
Related Topics
- Type
- article
- Landing Page
- http://arxiv.org/abs/2511.23034
- https://arxiv.org/pdf/2511.23034
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7108247020
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7108247020Canonical identifier for this work in OpenAlex
- Title
-
LatBot: Distilling Universal Latent Actions for Vision-Language-Action ModelsWork title
- Type
-
articleOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-28Full publication date if available
- Authors
-
LI Zuolei, Gao Xingyu, Wang Xiao-fan, Fu, JianlongList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.23034Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.23034Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.23034Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Generalization, Task (project management), Action (physics), Object (grammar), Machine learning, Transferability, Frame (networking), Prior probability, Robot, Robotics, Sequence (biology), Motion (physics), Downstream (manufacturing), Humanoid robot, Programming by demonstration, Cognitive neuroscience of visual object recognition, Task analysis, Generality, GRASP, Sequence learning, Categorization, Trajectory, Adaptability, Dependency (UML), Transfer of learning, Human–computer interactionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7108247020 |
|---|---|
| doi | |
| ids.openalex | https://openalex.org/W7108247020 |
| fwci | 0.0 |
| type | article |
| title | LatBot: Distilling Universal Latent Actions for Vision-Language-Action Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10653 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.3901480734348297 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Robot Manipulation and Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.21291428804397583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.15352967381477356 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7543988227844238 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.724861741065979 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C177148314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.640361487865448 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[2].display_name | Generalization |
| concepts[3].id | https://openalex.org/C2780451532 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6274053454399109 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[3].display_name | Task (project management) |
| concepts[4].id | https://openalex.org/C2780791683 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6088423728942871 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q846785 |
| concepts[4].display_name | Action (physics) |
| concepts[5].id | https://openalex.org/C2781238097 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5707281231880188 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[5].display_name | Object (grammar) |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5461451411247253 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C61272859 |
| concepts[7].level | 3 |
| concepts[7].score | 0.523859441280365 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7834031 |
| concepts[7].display_name | Transferability |
| concepts[8].id | https://openalex.org/C126042441 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5053494572639465 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1324888 |
| concepts[8].display_name | Frame (networking) |
| concepts[9].id | https://openalex.org/C177769412 |
| concepts[9].level | 3 |
| concepts[9].score | 0.5047212243080139 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q278090 |
| concepts[9].display_name | Prior probability |
| concepts[10].id | https://openalex.org/C90509273 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4847097396850586 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[10].display_name | Robot |
| concepts[11].id | https://openalex.org/C34413123 |
| concepts[11].level | 3 |
| concepts[11].score | 0.47175249457359314 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q170978 |
| concepts[11].display_name | Robotics |
| concepts[12].id | https://openalex.org/C2778112365 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4458008408546448 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[12].display_name | Sequence (biology) |
| concepts[13].id | https://openalex.org/C104114177 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4413943290710449 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[13].display_name | Motion (physics) |
| concepts[14].id | https://openalex.org/C2776207758 |
| concepts[14].level | 2 |
| concepts[14].score | 0.36400455236434937 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5303302 |
| concepts[14].display_name | Downstream (manufacturing) |
| concepts[15].id | https://openalex.org/C60692881 |
| concepts[15].level | 3 |
| concepts[15].score | 0.35561469197273254 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q584529 |
| concepts[15].display_name | Humanoid robot |
| concepts[16].id | https://openalex.org/C2779038628 |
| concepts[16].level | 3 |
| concepts[16].score | 0.3276473879814148 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7248497 |
| concepts[16].display_name | Programming by demonstration |
| concepts[17].id | https://openalex.org/C64876066 |
| concepts[17].level | 3 |
| concepts[17].score | 0.3202528655529022 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5141226 |
| concepts[17].display_name | Cognitive neuroscience of visual object recognition |
| concepts[18].id | https://openalex.org/C175154964 |
| concepts[18].level | 3 |
| concepts[18].score | 0.3160664141178131 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q380077 |
| concepts[18].display_name | Task analysis |
| concepts[19].id | https://openalex.org/C2780767217 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3001037836074829 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[19].display_name | Generality |
| concepts[20].id | https://openalex.org/C171268870 |
| concepts[20].level | 2 |
| concepts[20].score | 0.29405921697616577 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1486676 |
| concepts[20].display_name | GRASP |
| concepts[21].id | https://openalex.org/C40506919 |
| concepts[21].level | 2 |
| concepts[21].score | 0.292563259601593 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7452469 |
| concepts[21].display_name | Sequence learning |
| concepts[22].id | https://openalex.org/C94124525 |
| concepts[22].level | 2 |
| concepts[22].score | 0.2922200560569763 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[22].display_name | Categorization |
| concepts[23].id | https://openalex.org/C13662910 |
| concepts[23].level | 2 |
| concepts[23].score | 0.29009485244750977 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q193139 |
| concepts[23].display_name | Trajectory |
| concepts[24].id | https://openalex.org/C177606310 |
| concepts[24].level | 2 |
| concepts[24].score | 0.28427526354789734 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5674297 |
| concepts[24].display_name | Adaptability |
| concepts[25].id | https://openalex.org/C19768560 |
| concepts[25].level | 2 |
| concepts[25].score | 0.27386176586151123 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q320727 |
| concepts[25].display_name | Dependency (UML) |
| concepts[26].id | https://openalex.org/C150899416 |
| concepts[26].level | 2 |
| concepts[26].score | 0.25271719694137573 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[26].display_name | Transfer of learning |
| concepts[27].id | https://openalex.org/C107457646 |
| concepts[27].level | 1 |
| concepts[27].score | 0.2502003312110901 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[27].display_name | Human–computer interaction |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.640361487865448 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/task |
| keywords[1].score | 0.6274053454399109 |
| keywords[1].display_name | Task (project management) |
| keywords[2].id | https://openalex.org/keywords/action |
| keywords[2].score | 0.6088423728942871 |
| keywords[2].display_name | Action (physics) |
| keywords[3].id | https://openalex.org/keywords/object |
| keywords[3].score | 0.5707281231880188 |
| keywords[3].display_name | Object (grammar) |
| keywords[4].id | https://openalex.org/keywords/transferability |
| keywords[4].score | 0.523859441280365 |
| keywords[4].display_name | Transferability |
| keywords[5].id | https://openalex.org/keywords/frame |
| keywords[5].score | 0.5053494572639465 |
| keywords[5].display_name | Frame (networking) |
| keywords[6].id | https://openalex.org/keywords/prior-probability |
| keywords[6].score | 0.5047212243080139 |
| keywords[6].display_name | Prior probability |
| keywords[7].id | https://openalex.org/keywords/robot |
| keywords[7].score | 0.4847097396850586 |
| keywords[7].display_name | Robot |
| keywords[8].id | https://openalex.org/keywords/robotics |
| keywords[8].score | 0.47175249457359314 |
| keywords[8].display_name | Robotics |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.23034 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.23034 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.23034 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5030680663 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | LI Zuolei |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Zuolei |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A754092621 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Gao Xingyu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gao, Xingyu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2216041142 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Wang Xiao-fan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wang, Xiaofan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A2748452209 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fu, Jianlong |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fu, Jianlong |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.23034 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-03T00:00:00 |
| display_name | LatBot: Distilling Universal Latent Actions for Vision-Language-Action Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-03T00:07:38.036990 |
| primary_topic.id | https://openalex.org/T10653 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.3901480734348297 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Robot Manipulation and Learning |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.23034 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.23034 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.23034 |
| primary_location.id | pmh:oai:arXiv.org:2511.23034 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.23034 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.23034 |
| publication_date | 2025-11-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 52, 172 |
| abstract_inverted_index.10 | 165 |
| abstract_inverted_index.By | 137 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.We | 111 |
| abstract_inverted_index.as | 17, 65, 99 |
| abstract_inverted_index.in | 13, 42, 187 |
| abstract_inverted_index.on | 30, 171 |
| abstract_inverted_index.or | 85 |
| abstract_inverted_index.to | 22, 39, 93, 108, 123 |
| abstract_inverted_index.we | 50, 148 |
| abstract_inverted_index.VLA | 146 |
| abstract_inverted_index.all | 179 |
| abstract_inverted_index.and | 62, 67, 73, 88, 102, 120, 156, 158 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.can | 9 |
| abstract_inverted_index.our | 175 |
| abstract_inverted_index.out | 134 |
| abstract_inverted_index.per | 168 |
| abstract_inverted_index.the | 91, 114, 125, 139, 144 |
| abstract_inverted_index.both | 69, 153 |
| abstract_inverted_index.five | 180 |
| abstract_inverted_index.from | 4, 129 |
| abstract_inverted_index.hand | 86 |
| abstract_inverted_index.into | 117, 143 |
| abstract_inverted_index.only | 164 |
| abstract_inverted_index.rely | 29 |
| abstract_inverted_index.such | 18, 98 |
| abstract_inverted_index.task | 60, 169 |
| abstract_inverted_index.that | 58 |
| abstract_inverted_index.thus | 132 |
| abstract_inverted_index.with | 163 |
| abstract_inverted_index.frame | 71 |
| abstract_inverted_index.model | 92 |
| abstract_inverted_index.prior | 78 |
| abstract_inverted_index.robot | 24, 160 |
| abstract_inverted_index.scene | 121 |
| abstract_inverted_index.takes | 59 |
| abstract_inverted_index.these | 48 |
| abstract_inverted_index.while | 34 |
| abstract_inverted_index.(e.g., | 83 |
| abstract_inverted_index.Action | 55 |
| abstract_inverted_index.Franka | 173 |
| abstract_inverted_index.Latent | 54 |
| abstract_inverted_index.Unlike | 77 |
| abstract_inverted_index.across | 152 |
| abstract_inverted_index.action | 74, 81 |
| abstract_inverted_index.active | 127 |
| abstract_inverted_index.allows | 90 |
| abstract_inverted_index.frames | 64 |
| abstract_inverted_index.future | 70 |
| abstract_inverted_index.latent | 2, 115, 141 |
| abstract_inverted_index.latest | 145 |
| abstract_inverted_index.motion | 119 |
| abstract_inverted_index.object | 6 |
| abstract_inverted_index.priors | 97 |
| abstract_inverted_index.richer | 95 |
| abstract_inverted_index.robot, | 174 |
| abstract_inverted_index.strong | 150, 184 |
| abstract_inverted_index.tasks, | 16, 182 |
| abstract_inverted_index.tasks. | 110 |
| abstract_inverted_index.tokens | 122 |
| abstract_inverted_index.videos | 8 |
| abstract_inverted_index.visual | 31 |
| abstract_inverted_index.works, | 79 |
| abstract_inverted_index.LIBERO) | 157 |
| abstract_inverted_index.achieve | 149 |
| abstract_inverted_index.actions | 3, 116, 142 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.capture | 94 |
| abstract_inverted_index.enhance | 11 |
| abstract_inverted_index.further | 112 |
| abstract_inverted_index.gripper | 84 |
| abstract_inverted_index.inputs, | 66 |
| abstract_inverted_index.leading | 38 |
| abstract_inverted_index.learned | 140 |
| abstract_inverted_index.models, | 147 |
| abstract_inverted_index.priors, | 37 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.robot's | 126 |
| abstract_inverted_index.robotic | 188 |
| abstract_inverted_index.thereby | 104 |
| abstract_inverted_index.(SIMPLER | 155 |
| abstract_inverted_index.Existing | 26 |
| abstract_inverted_index.Learning | 0, 56 |
| abstract_inverted_index.Notably, | 162 |
| abstract_inverted_index.agnostic | 21 |
| abstract_inverted_index.approach | 176 |
| abstract_inverted_index.changes, | 131 |
| abstract_inverted_index.enabling | 105 |
| abstract_inverted_index.few-shot | 185 |
| abstract_inverted_index.learning | 43 |
| abstract_inverted_index.multiple | 63 |
| abstract_inverted_index.physical | 36, 96 |
| abstract_inverted_index.robotics | 15 |
| abstract_inverted_index.seamless | 106 |
| abstract_inverted_index.sequence | 75 |
| abstract_inverted_index.Universal | 53 |
| abstract_inverted_index.collected | 170 |
| abstract_inverted_index.completes | 178 |
| abstract_inverted_index.decompose | 113 |
| abstract_inverted_index.different | 23 |
| abstract_inverted_index.distances | 101 |
| abstract_inverted_index.dynamics. | 136 |
| abstract_inverted_index.filtering | 133 |
| abstract_inverted_index.framework | 57 |
| abstract_inverted_index.learnable | 118 |
| abstract_inverted_index.movements | 128 |
| abstract_inverted_index.optimizes | 68 |
| abstract_inverted_index.primarily | 28 |
| abstract_inverted_index.settings. | 161 |
| abstract_inverted_index.simulated | 154 |
| abstract_inverted_index.universal | 44 |
| abstract_inverted_index.approaches | 27 |
| abstract_inverted_index.distilling | 138 |
| abstract_inverted_index.downstream | 14, 109 |
| abstract_inverted_index.irrelevant | 135 |
| abstract_inverted_index.neglecting | 35 |
| abstract_inverted_index.objectives | 33 |
| abstract_inverted_index.real-world | 100, 159, 166 |
| abstract_inverted_index.challenges, | 49 |
| abstract_inverted_index.challenging | 181 |
| abstract_inverted_index.distinguish | 124 |
| abstract_inverted_index.large-scale | 5 |
| abstract_inverted_index.performance | 41, 151 |
| abstract_inverted_index.prediction. | 76 |
| abstract_inverted_index.predictions | 82 |
| abstract_inverted_index.sub-optimal | 40 |
| abstract_inverted_index.embodiments. | 25 |
| abstract_inverted_index.instructions | 61 |
| abstract_inverted_index.manipulation | 7 |
| abstract_inverted_index.successfully | 177 |
| abstract_inverted_index.trajectories | 87, 167 |
| abstract_inverted_index.transferable | 1 |
| abstract_inverted_index.demonstrating | 183 |
| abstract_inverted_index.environmental | 130 |
| abstract_inverted_index.incorporating | 80 |
| abstract_inverted_index.manipulation. | 189 |
| abstract_inverted_index.orientations) | 89 |
| abstract_inverted_index.orientations, | 103 |
| abstract_inverted_index.significantly | 10 |
| abstract_inverted_index.generalization | 12 |
| abstract_inverted_index.reconstruction | 32, 72 |
| abstract_inverted_index.representations | 19 |
| abstract_inverted_index.transferability | 107, 186 |
| abstract_inverted_index.representations. | 45 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.79723261 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |