Latent Semantic Sequence Coding Applied to Taxi Travel Time Estimation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/ijgi12020044
Taxi travel time estimation based on real-time traffic flow collection in IoT has been well explored; however, it becomes a challenge to use the limited taxi data to estimate the travel time. Most of the existing methods in this scenario rely on shallow feature engineering. Nevertheless, they have limited performance in learning complex moving patterns. Thus, a Latent Semantic Pulse Sequence-based Deep Neural Network (LSPS-DNN) is proposed in this paper to improve the taxi travel time estimation performance by constructing a latent semantic propagation graph representing the latent path sequence. It first extracts the shallow modal features of trips, such as the time period and spatial location at different granularities. The representation of the pulse propagation graph is then extracted from shallow spatial features using a Pulse Coupled Neural Network (PCNN). Further, the propagation graph is encoded with negative sampling to obtain the embedding of deep propagation features between ODs. Meanwhile, we conduct deep network learning based on the Chengdu and NYC taxi datasets; our experimental evaluation results show it has a better performance compared to traditional feature construction methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ijgi12020044
- https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695
- OA Status
- gold
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4318823936
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4318823936Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ijgi12020044Digital Object Identifier
- Title
-
Latent Semantic Sequence Coding Applied to Taxi Travel Time EstimationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-31Full publication date if available
- Authors
-
Zilin Zhao, Yuanying Chi, Zhiming Ding, Mengmeng Chang, Zhi CaiList of authors in order
- Landing page
-
https://doi.org/10.3390/ijgi12020044Publisher landing page
- PDF URL
-
https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695Direct OA link when available
- Concepts
-
Computer science, Graph, Artificial neural network, Coding (social sciences), Modal, Deep learning, Artificial intelligence, Feature (linguistics), Data mining, Pattern recognition (psychology), Theoretical computer science, Statistics, Mathematics, Chemistry, Polymer chemistry, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4318823936 |
|---|---|
| doi | https://doi.org/10.3390/ijgi12020044 |
| ids.doi | https://doi.org/10.3390/ijgi12020044 |
| ids.openalex | https://openalex.org/W4318823936 |
| fwci | 0.0 |
| type | article |
| title | Latent Semantic Sequence Coding Applied to Taxi Travel Time Estimation |
| awards[0].id | https://openalex.org/G249853018 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2022YFF0503900 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G7741645351 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 62072016 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 2 |
| biblio.volume | 12 |
| biblio.last_page | 44 |
| biblio.first_page | 44 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10524 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Traffic control and management |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7023434638977051 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5083498358726501 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5076838731765747 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C179518139 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48519566655158997 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5140297 |
| concepts[3].display_name | Coding (social sciences) |
| concepts[4].id | https://openalex.org/C71139939 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4756814241409302 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[4].display_name | Modal |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47347700595855713 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47122064232826233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.448818564414978 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.39207106828689575 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3407437205314636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14602574706077576 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.10693496465682983 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09597307443618774 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C188027245 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[14].display_name | Polymer chemistry |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7023434638977051 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5083498358726501 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5076838731765747 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/coding |
| keywords[3].score | 0.48519566655158997 |
| keywords[3].display_name | Coding (social sciences) |
| keywords[4].id | https://openalex.org/keywords/modal |
| keywords[4].score | 0.4756814241409302 |
| keywords[4].display_name | Modal |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.47347700595855713 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47122064232826233 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.448818564414978 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.39207106828689575 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.3407437205314636 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.14602574706077576 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.10693496465682983 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.09597307443618774 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/ijgi12020044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764431341 |
| locations[0].source.issn | 2220-9964 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2220-9964 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISPRS International Journal of Geo-Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS International Journal of Geo-Information |
| locations[0].landing_page_url | https://doi.org/10.3390/ijgi12020044 |
| locations[1].id | pmh:oai:doaj.org/article:364f9996efc24869a7517a12d328a0e2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ISPRS International Journal of Geo-Information, Vol 12, Iss 2, p 44 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/364f9996efc24869a7517a12d328a0e2 |
| locations[2].id | pmh:oai:mdpi.com:/2220-9964/12/2/44/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | ISPRS International Journal of Geo-Information |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/ijgi12020044 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5048936923 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7002-9306 |
| authorships[0].author.display_name | Zilin Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zilin Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[1].author.id | https://openalex.org/A5108770274 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yuanying Chi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Economics and Management, Beijing University of Technology, Beijing 100124, China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuanying Chi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Economics and Management, Beijing University of Technology, Beijing 100124, China |
| authorships[2].author.id | https://openalex.org/A5057841485 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2057-5325 |
| authorships[2].author.display_name | Zhiming Ding |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128818 |
| authorships[2].affiliations[0].raw_affiliation_string | The Institute of Software, Chinese Academy of Sciences, Beijing 100190, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210128818 |
| authorships[2].institutions[1].ror | https://ror.org/033dfsn42 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210128818 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Institute of Software |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhiming Ding |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | The Institute of Software, Chinese Academy of Sciences, Beijing 100190, China |
| authorships[3].author.id | https://openalex.org/A5009028498 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0800-9582 |
| authorships[3].author.display_name | Mengmeng Chang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[3].institutions[0].id | https://openalex.org/I37796252 |
| authorships[3].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Beijing University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mengmeng Chang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[4].author.id | https://openalex.org/A5058443202 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6732-6855 |
| authorships[4].author.display_name | Zhi Cai |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhi Cai |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Latent Semantic Sequence Coding Applied to Taxi Travel Time Estimation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W2731899572, https://openalex.org/W4230611425, https://openalex.org/W4294635752, https://openalex.org/W4304166257, https://openalex.org/W4383066092, https://openalex.org/W3215138031, https://openalex.org/W2379392295, https://openalex.org/W3160965418 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/ijgi12020044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764431341 |
| best_oa_location.source.issn | 2220-9964 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2220-9964 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISPRS International Journal of Geo-Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS International Journal of Geo-Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ijgi12020044 |
| primary_location.id | doi:10.3390/ijgi12020044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764431341 |
| primary_location.source.issn | 2220-9964 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2220-9964 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISPRS International Journal of Geo-Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2220-9964/12/2/44/pdf?version=1675159695 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS International Journal of Geo-Information |
| primary_location.landing_page_url | https://doi.org/10.3390/ijgi12020044 |
| publication_date | 2023-01-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3200652106, https://openalex.org/W2970079819, https://openalex.org/W2999798734, https://openalex.org/W2295598076, https://openalex.org/W2972581457, https://openalex.org/W3206845671, https://openalex.org/W2149959126, https://openalex.org/W3183563755, https://openalex.org/W2899948777, https://openalex.org/W3178811037, https://openalex.org/W3205051172, https://openalex.org/W2203947310, https://openalex.org/W2964068664, https://openalex.org/W1967784075, https://openalex.org/W2598251739, https://openalex.org/W2536011999, https://openalex.org/W2792569430, https://openalex.org/W2943039810, https://openalex.org/W2101491865, https://openalex.org/W2018434937, https://openalex.org/W3106295757 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 19, 56, 80, 125, 171 |
| abstract_inverted_index.It | 90 |
| abstract_inverted_index.as | 100 |
| abstract_inverted_index.at | 107 |
| abstract_inverted_index.by | 78 |
| abstract_inverted_index.in | 10, 37, 50, 67 |
| abstract_inverted_index.is | 65, 117, 135 |
| abstract_inverted_index.it | 17, 169 |
| abstract_inverted_index.of | 33, 97, 112, 144 |
| abstract_inverted_index.on | 5, 41, 157 |
| abstract_inverted_index.to | 21, 27, 70, 140, 175 |
| abstract_inverted_index.we | 151 |
| abstract_inverted_index.IoT | 11 |
| abstract_inverted_index.NYC | 161 |
| abstract_inverted_index.The | 110 |
| abstract_inverted_index.and | 104, 160 |
| abstract_inverted_index.has | 12, 170 |
| abstract_inverted_index.our | 164 |
| abstract_inverted_index.the | 23, 29, 34, 72, 86, 93, 101, 113, 132, 142, 158 |
| abstract_inverted_index.use | 22 |
| abstract_inverted_index.Deep | 61 |
| abstract_inverted_index.Most | 32 |
| abstract_inverted_index.ODs. | 149 |
| abstract_inverted_index.Taxi | 0 |
| abstract_inverted_index.been | 13 |
| abstract_inverted_index.data | 26 |
| abstract_inverted_index.deep | 145, 153 |
| abstract_inverted_index.flow | 8 |
| abstract_inverted_index.from | 120 |
| abstract_inverted_index.have | 47 |
| abstract_inverted_index.path | 88 |
| abstract_inverted_index.rely | 40 |
| abstract_inverted_index.show | 168 |
| abstract_inverted_index.such | 99 |
| abstract_inverted_index.taxi | 25, 73, 162 |
| abstract_inverted_index.then | 118 |
| abstract_inverted_index.they | 46 |
| abstract_inverted_index.this | 38, 68 |
| abstract_inverted_index.time | 2, 75, 102 |
| abstract_inverted_index.well | 14 |
| abstract_inverted_index.with | 137 |
| abstract_inverted_index.Pulse | 59, 126 |
| abstract_inverted_index.Thus, | 55 |
| abstract_inverted_index.based | 4, 156 |
| abstract_inverted_index.first | 91 |
| abstract_inverted_index.graph | 84, 116, 134 |
| abstract_inverted_index.modal | 95 |
| abstract_inverted_index.paper | 69 |
| abstract_inverted_index.pulse | 114 |
| abstract_inverted_index.time. | 31 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.Latent | 57 |
| abstract_inverted_index.Neural | 62, 128 |
| abstract_inverted_index.better | 172 |
| abstract_inverted_index.latent | 81, 87 |
| abstract_inverted_index.moving | 53 |
| abstract_inverted_index.obtain | 141 |
| abstract_inverted_index.period | 103 |
| abstract_inverted_index.travel | 1, 30, 74 |
| abstract_inverted_index.trips, | 98 |
| abstract_inverted_index.(PCNN). | 130 |
| abstract_inverted_index.Chengdu | 159 |
| abstract_inverted_index.Coupled | 127 |
| abstract_inverted_index.Network | 63, 129 |
| abstract_inverted_index.becomes | 18 |
| abstract_inverted_index.between | 148 |
| abstract_inverted_index.complex | 52 |
| abstract_inverted_index.conduct | 152 |
| abstract_inverted_index.encoded | 136 |
| abstract_inverted_index.feature | 43, 177 |
| abstract_inverted_index.improve | 71 |
| abstract_inverted_index.limited | 24, 48 |
| abstract_inverted_index.methods | 36 |
| abstract_inverted_index.network | 154 |
| abstract_inverted_index.results | 167 |
| abstract_inverted_index.shallow | 42, 94, 121 |
| abstract_inverted_index.spatial | 105, 122 |
| abstract_inverted_index.traffic | 7 |
| abstract_inverted_index.Further, | 131 |
| abstract_inverted_index.Semantic | 58 |
| abstract_inverted_index.compared | 174 |
| abstract_inverted_index.estimate | 28 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.extracts | 92 |
| abstract_inverted_index.features | 96, 123, 147 |
| abstract_inverted_index.however, | 16 |
| abstract_inverted_index.learning | 51, 155 |
| abstract_inverted_index.location | 106 |
| abstract_inverted_index.methods. | 179 |
| abstract_inverted_index.negative | 138 |
| abstract_inverted_index.proposed | 66 |
| abstract_inverted_index.sampling | 139 |
| abstract_inverted_index.scenario | 39 |
| abstract_inverted_index.semantic | 82 |
| abstract_inverted_index.challenge | 20 |
| abstract_inverted_index.datasets; | 163 |
| abstract_inverted_index.different | 108 |
| abstract_inverted_index.embedding | 143 |
| abstract_inverted_index.explored; | 15 |
| abstract_inverted_index.extracted | 119 |
| abstract_inverted_index.patterns. | 54 |
| abstract_inverted_index.real-time | 6 |
| abstract_inverted_index.sequence. | 89 |
| abstract_inverted_index.(LSPS-DNN) | 64 |
| abstract_inverted_index.Meanwhile, | 150 |
| abstract_inverted_index.collection | 9 |
| abstract_inverted_index.estimation | 3, 76 |
| abstract_inverted_index.evaluation | 166 |
| abstract_inverted_index.performance | 49, 77, 173 |
| abstract_inverted_index.propagation | 83, 115, 133, 146 |
| abstract_inverted_index.traditional | 176 |
| abstract_inverted_index.constructing | 79 |
| abstract_inverted_index.construction | 178 |
| abstract_inverted_index.engineering. | 44 |
| abstract_inverted_index.experimental | 165 |
| abstract_inverted_index.representing | 85 |
| abstract_inverted_index.Nevertheless, | 45 |
| abstract_inverted_index.Sequence-based | 60 |
| abstract_inverted_index.granularities. | 109 |
| abstract_inverted_index.representation | 111 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5057841485 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128818 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.00866083 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |