LDPKiT: Superimposing Remote Queries for Privacy-Preserving Local Model Training Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.16361
Users of modern Machine Learning (ML) cloud services face a privacy conundrum -- on one hand, they may have concerns about sending private data to the service for inference, but on the other hand, for specialized models, there may be no alternative but to use the proprietary model of the ML service. In this work, we present LDPKiT, a framework for non-adversarial, privacy-preserving model extraction that leverages a user's private in-distribution data while bounding privacy leakage. LDPKiT introduces a novel superimposition technique that generates approximately in-distribution samples, enabling effective knowledge transfer under local differential privacy (LDP). Experiments on Fashion-MNIST, SVHN, and PathMNIST demonstrate that LDPKiT consistently improves utility while maintaining privacy, with benefits that become more pronounced at stronger noise levels. For example, on SVHN, LDPKiT achieves nearly the same inference accuracy at $ε=1.25$ as at $ε=2.0$, yielding stronger privacy guarantees with less than a 2% accuracy reduction. We further conduct sensitivity analyses to examine the effect of dataset size on performance and provide a systematic analysis of latent space representations, offering theoretical insights into the accuracy gains of LDPKiT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.16361
- https://arxiv.org/pdf/2405.16361
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399115546
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399115546Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.16361Digital Object Identifier
- Title
-
LDPKiT: Superimposing Remote Queries for Privacy-Preserving Local Model TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-25Full publication date if available
- Authors
-
Kexin Li, Xi Yang, Aastha Mehta, David LieList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.16361Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.16361Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.16361Direct OA link when available
- Concepts
-
Training (meteorology), Computer science, Noise (video), Artificial intelligence, Image (mathematics), Geography, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399115546 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.16361 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.16361 |
| ids.openalex | https://openalex.org/W4399115546 |
| fwci | |
| type | preprint |
| title | LDPKiT: Superimposing Remote Queries for Privacy-Preserving Local Model Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10232 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9815000295639038 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Optical Network Technologies |
| topics[1].id | https://openalex.org/T10847 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.975600004196167 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Optical Network Technologies |
| topics[2].id | https://openalex.org/T10767 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9297000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Photonic Communication Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777211547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7120229601860046 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[0].display_name | Training (meteorology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6542249321937561 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C99498987 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5654084086418152 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[2].display_name | Noise (video) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.30991941690444946 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.07172545790672302 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.0647808313369751 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/training |
| keywords[0].score | 0.7120229601860046 |
| keywords[0].display_name | Training (meteorology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6542249321937561 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/noise |
| keywords[2].score | 0.5654084086418152 |
| keywords[2].display_name | Noise (video) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.30991941690444946 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.07172545790672302 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.0647808313369751 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.16361 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.16361 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.16361 |
| locations[1].id | doi:10.48550/arxiv.2405.16361 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.16361 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5111114874 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-7417-6398 |
| authorships[0].author.display_name | Kexin Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Kexin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5054583558 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3359-4285 |
| authorships[1].author.display_name | Xi Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xi, Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5086794440 |
| authorships[2].author.orcid | https://orcid.org/0009-0005-3416-5254 |
| authorships[2].author.display_name | Aastha Mehta |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mehta, Aastha |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5049933072 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2000-6827 |
| authorships[3].author.display_name | David Lie |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lie, David |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.16361 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-29T00:00:00 |
| display_name | LDPKiT: Superimposing Remote Queries for Privacy-Preserving Local Model Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10232 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9815000295639038 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Optical Network Technologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W230091440, https://openalex.org/W2390279801, https://openalex.org/W2233261550, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2810751659, https://openalex.org/W258997015, https://openalex.org/W2376932109 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.16361 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.16361 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.16361 |
| primary_location.id | pmh:oai:arXiv.org:2405.16361 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.16361 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.16361 |
| publication_date | 2024-05-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 58, 67, 78, 144, 164 |
| abstract_inverted_index.-- | 12 |
| abstract_inverted_index.2% | 145 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.ML | 50 |
| abstract_inverted_index.We | 148 |
| abstract_inverted_index.as | 134 |
| abstract_inverted_index.at | 117, 132, 135 |
| abstract_inverted_index.be | 39 |
| abstract_inverted_index.no | 40 |
| abstract_inverted_index.of | 1, 48, 157, 167, 178 |
| abstract_inverted_index.on | 13, 30, 97, 123, 160 |
| abstract_inverted_index.to | 24, 43, 153 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.For | 121 |
| abstract_inverted_index.and | 100, 162 |
| abstract_inverted_index.but | 29, 42 |
| abstract_inverted_index.for | 27, 34, 60 |
| abstract_inverted_index.may | 17, 38 |
| abstract_inverted_index.one | 14 |
| abstract_inverted_index.the | 25, 31, 45, 49, 128, 155, 175 |
| abstract_inverted_index.use | 44 |
| abstract_inverted_index.(ML) | 5 |
| abstract_inverted_index.data | 23, 71 |
| abstract_inverted_index.face | 8 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.into | 174 |
| abstract_inverted_index.less | 142 |
| abstract_inverted_index.more | 115 |
| abstract_inverted_index.same | 129 |
| abstract_inverted_index.size | 159 |
| abstract_inverted_index.than | 143 |
| abstract_inverted_index.that | 65, 82, 103, 113 |
| abstract_inverted_index.they | 16 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.with | 111, 141 |
| abstract_inverted_index.SVHN, | 99, 124 |
| abstract_inverted_index.Users | 0 |
| abstract_inverted_index.about | 20 |
| abstract_inverted_index.cloud | 6 |
| abstract_inverted_index.gains | 177 |
| abstract_inverted_index.hand, | 15, 33 |
| abstract_inverted_index.local | 92 |
| abstract_inverted_index.model | 47, 63 |
| abstract_inverted_index.noise | 119 |
| abstract_inverted_index.novel | 79 |
| abstract_inverted_index.other | 32 |
| abstract_inverted_index.space | 169 |
| abstract_inverted_index.there | 37 |
| abstract_inverted_index.under | 91 |
| abstract_inverted_index.while | 72, 108 |
| abstract_inverted_index.work, | 54 |
| abstract_inverted_index.(LDP). | 95 |
| abstract_inverted_index.LDPKiT | 76, 104, 125 |
| abstract_inverted_index.become | 114 |
| abstract_inverted_index.effect | 156 |
| abstract_inverted_index.latent | 168 |
| abstract_inverted_index.modern | 2 |
| abstract_inverted_index.nearly | 127 |
| abstract_inverted_index.user's | 68 |
| abstract_inverted_index.LDPKiT, | 57 |
| abstract_inverted_index.LDPKiT. | 179 |
| abstract_inverted_index.Machine | 3 |
| abstract_inverted_index.conduct | 150 |
| abstract_inverted_index.dataset | 158 |
| abstract_inverted_index.examine | 154 |
| abstract_inverted_index.further | 149 |
| abstract_inverted_index.levels. | 120 |
| abstract_inverted_index.models, | 36 |
| abstract_inverted_index.present | 56 |
| abstract_inverted_index.privacy | 10, 74, 94, 139 |
| abstract_inverted_index.private | 22, 69 |
| abstract_inverted_index.provide | 163 |
| abstract_inverted_index.sending | 21 |
| abstract_inverted_index.service | 26 |
| abstract_inverted_index.utility | 107 |
| abstract_inverted_index.Learning | 4 |
| abstract_inverted_index.accuracy | 131, 146, 176 |
| abstract_inverted_index.achieves | 126 |
| abstract_inverted_index.analyses | 152 |
| abstract_inverted_index.analysis | 166 |
| abstract_inverted_index.benefits | 112 |
| abstract_inverted_index.bounding | 73 |
| abstract_inverted_index.concerns | 19 |
| abstract_inverted_index.enabling | 87 |
| abstract_inverted_index.example, | 122 |
| abstract_inverted_index.improves | 106 |
| abstract_inverted_index.insights | 173 |
| abstract_inverted_index.leakage. | 75 |
| abstract_inverted_index.offering | 171 |
| abstract_inverted_index.privacy, | 110 |
| abstract_inverted_index.samples, | 86 |
| abstract_inverted_index.service. | 51 |
| abstract_inverted_index.services | 7 |
| abstract_inverted_index.stronger | 118, 138 |
| abstract_inverted_index.transfer | 90 |
| abstract_inverted_index.yielding | 137 |
| abstract_inverted_index.$ε=1.25$ | 133 |
| abstract_inverted_index.$ε=2.0$, | 136 |
| abstract_inverted_index.PathMNIST | 101 |
| abstract_inverted_index.conundrum | 11 |
| abstract_inverted_index.effective | 88 |
| abstract_inverted_index.framework | 59 |
| abstract_inverted_index.generates | 83 |
| abstract_inverted_index.inference | 130 |
| abstract_inverted_index.knowledge | 89 |
| abstract_inverted_index.leverages | 66 |
| abstract_inverted_index.technique | 81 |
| abstract_inverted_index.extraction | 64 |
| abstract_inverted_index.guarantees | 140 |
| abstract_inverted_index.inference, | 28 |
| abstract_inverted_index.introduces | 77 |
| abstract_inverted_index.pronounced | 116 |
| abstract_inverted_index.reduction. | 147 |
| abstract_inverted_index.systematic | 165 |
| abstract_inverted_index.Experiments | 96 |
| abstract_inverted_index.alternative | 41 |
| abstract_inverted_index.demonstrate | 102 |
| abstract_inverted_index.maintaining | 109 |
| abstract_inverted_index.performance | 161 |
| abstract_inverted_index.proprietary | 46 |
| abstract_inverted_index.sensitivity | 151 |
| abstract_inverted_index.specialized | 35 |
| abstract_inverted_index.theoretical | 172 |
| abstract_inverted_index.consistently | 105 |
| abstract_inverted_index.differential | 93 |
| abstract_inverted_index.approximately | 84 |
| abstract_inverted_index.Fashion-MNIST, | 98 |
| abstract_inverted_index.in-distribution | 70, 85 |
| abstract_inverted_index.superimposition | 80 |
| abstract_inverted_index.non-adversarial, | 61 |
| abstract_inverted_index.representations, | 170 |
| abstract_inverted_index.privacy-preserving | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |